TY - JOUR
T1 - Adenosine A3 receptor-mediated cardioprotection against doxorubicin-induced mitochondrial damage
AU - Emanuelov, Avishag K.
AU - Shainberg, Asher
AU - Chepurko, Yelena
AU - Kaplan, Doron
AU - Sagie, Alex
AU - Porat, Eyal
AU - Arad, Michael
AU - Hochhauser, Edith
N1 - Funding Information:
This research study was conducted through the generous support of The Adar Program for the Advancement of Research in Heart Function and the Horowitz Foundation at Bar-Ilan University.
PY - 2010/1/15
Y1 - 2010/1/15
N2 - Cardiotoxicity associated with doxorubicin (DOX) treatment limits the therapeutic efficiency of this drug against cancer. 2-Chloro-N(6)-(3-iodobenzyl)adenosine-5′-N-methyluronamide (Cl-IB-MECA), a selective agonist of A3 adenosine receptor (A3R), reduces DOX toxicity in newborn rat cultured cardiomyocytes. The study's aim was to determine whether the protection demonstrated by Cl-IB-MECA attenuates cardiac depression in vivo. In addition, we wished to examine whether this protective pathway affects the sarcoplasmic reticulum (SR) calcium uptake and release, as well as intramitochondrial Ca2+ accumulation induced by DOX. Rats were injected every alternate day (6 times) with (1) saline, (2) 2.5 mg/kg i.p. DOX, (3) 33 μg/kg i.v. Cl-IB-MECA, (4) DOX + Cl-IB-MECA. Left ventricular functions were assessed by invasive (pressure) and non-invasive (echocardiography) techniques at the end of the injection period and 4 weeks later. Cytosolic and intramitochondrial calcium levels were measured with indo-1 and rhod-2 probes. SR Ca2+ content was determined by exposing cultured rat cardiomyocytes to caffeine. Echocardiography data demonstrate left ventricular wall thinning (23%), an increase in the end systolic dimension (170%) and decreased fractional shortening (35 ± 5% vs. 54 ± 5%, p < 0.01) in DOX-treated animals, compared to the control group. DOX increased Ca2+ levels in the cytosol and in mitochondria by diminishing the SR Ca2+ uptake. Pretreatment with Cl-IB-MECA attenuated left ventricular dysfunction, improved SR calcium storage capacity and prevented mitochondrial Ca2+ overload. We conclude that the adenosine A3 receptor agonist is effective in vivo against DOX cardiotoxicity via the restoration of Ca2+ homeostasis and prevention of mitochondrial damage that occurs as a result of Ca2+ overload.
AB - Cardiotoxicity associated with doxorubicin (DOX) treatment limits the therapeutic efficiency of this drug against cancer. 2-Chloro-N(6)-(3-iodobenzyl)adenosine-5′-N-methyluronamide (Cl-IB-MECA), a selective agonist of A3 adenosine receptor (A3R), reduces DOX toxicity in newborn rat cultured cardiomyocytes. The study's aim was to determine whether the protection demonstrated by Cl-IB-MECA attenuates cardiac depression in vivo. In addition, we wished to examine whether this protective pathway affects the sarcoplasmic reticulum (SR) calcium uptake and release, as well as intramitochondrial Ca2+ accumulation induced by DOX. Rats were injected every alternate day (6 times) with (1) saline, (2) 2.5 mg/kg i.p. DOX, (3) 33 μg/kg i.v. Cl-IB-MECA, (4) DOX + Cl-IB-MECA. Left ventricular functions were assessed by invasive (pressure) and non-invasive (echocardiography) techniques at the end of the injection period and 4 weeks later. Cytosolic and intramitochondrial calcium levels were measured with indo-1 and rhod-2 probes. SR Ca2+ content was determined by exposing cultured rat cardiomyocytes to caffeine. Echocardiography data demonstrate left ventricular wall thinning (23%), an increase in the end systolic dimension (170%) and decreased fractional shortening (35 ± 5% vs. 54 ± 5%, p < 0.01) in DOX-treated animals, compared to the control group. DOX increased Ca2+ levels in the cytosol and in mitochondria by diminishing the SR Ca2+ uptake. Pretreatment with Cl-IB-MECA attenuated left ventricular dysfunction, improved SR calcium storage capacity and prevented mitochondrial Ca2+ overload. We conclude that the adenosine A3 receptor agonist is effective in vivo against DOX cardiotoxicity via the restoration of Ca2+ homeostasis and prevention of mitochondrial damage that occurs as a result of Ca2+ overload.
KW - A adenosine receptors
KW - Ca homeostasis
KW - Cl-IB-MECA
KW - Doxorubicin
UR - http://www.scopus.com/inward/record.url?scp=71749115994&partnerID=8YFLogxK
U2 - 10.1016/j.bcp.2009.08.010
DO - 10.1016/j.bcp.2009.08.010
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:71749115994
SN - 0006-2952
VL - 79
SP - 180
EP - 187
JO - Biochemical Pharmacology
JF - Biochemical Pharmacology
IS - 2
ER -