TY - GEN
T1 - Adaptive management of migratory birds under sea level rise
AU - Nicol, Samuel
AU - Buffet, Olivier
AU - Iwamura, Takuya
AU - Chadès, Iadine
PY - 2013
Y1 - 2013
N2 - The best practice method for managing ecological systems under uncertainty is adaptive management (AM), an iterative process of reducing uncertainty while simultaneously optimizing a management objective. Existing solution methods used for AM problems assume that the system dynamics are stationary, i.e., described by one of a set of pre-defined models. In reality ecological systems are rarely stationary and evolve over time. Importantly, the effects of climate change on populations are unlikely to be captured by stationary models. Practitioners need efficient algorithms to implement AM on real-world problems. AM can be formulated as a hidden model Markov Decision Process (hmMDP), which allows the state space to be factored and shows promise for the rapid resolution of large problems. We provide an ecological dataset and performance metrics for the AM of a network of shorebird species utilizing the East Asian-Australasian flyway given uncertainty about the rate of sea level rise. The non-stationary system is modelled as a stationary POMDP containing hidden alternative models with known probabilities of transition between them. We challenge the POMDP community to exploit the simplifications allowed by structuring the AM problem as an hmMDP and improve our benchmark solutions.
AB - The best practice method for managing ecological systems under uncertainty is adaptive management (AM), an iterative process of reducing uncertainty while simultaneously optimizing a management objective. Existing solution methods used for AM problems assume that the system dynamics are stationary, i.e., described by one of a set of pre-defined models. In reality ecological systems are rarely stationary and evolve over time. Importantly, the effects of climate change on populations are unlikely to be captured by stationary models. Practitioners need efficient algorithms to implement AM on real-world problems. AM can be formulated as a hidden model Markov Decision Process (hmMDP), which allows the state space to be factored and shows promise for the rapid resolution of large problems. We provide an ecological dataset and performance metrics for the AM of a network of shorebird species utilizing the East Asian-Australasian flyway given uncertainty about the rate of sea level rise. The non-stationary system is modelled as a stationary POMDP containing hidden alternative models with known probabilities of transition between them. We challenge the POMDP community to exploit the simplifications allowed by structuring the AM problem as an hmMDP and improve our benchmark solutions.
UR - http://www.scopus.com/inward/record.url?scp=84896063885&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84896063885
SN - 9781577356332
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 2955
EP - 2957
BT - IJCAI 2013 - Proceedings of the 23rd International Joint Conference on Artificial Intelligence
T2 - 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
Y2 - 3 August 2013 through 9 August 2013
ER -