Accuracy versus precision in boosted top tagging with the ATLAS detector

The ATLAS collaboration

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The identification of top quark decays where the top quark has a large momentum transverse to the beam axis, known as top tagging, is a crucial component in many measurements of Standard Model processes and searches for beyond the Standard Model physics at the Large Hadron Collider. Machine learning techniques have improved the performance of top tagging algorithms, but the size of the systematic uncertainties for all proposed algorithms has not been systematically studied. This paper presents the performance of several machine learning based top tagging algorithms on a dataset constructed from simulated proton-proton collision events measured with the ATLAS detector at √s = 13 TeV. The systematic uncertainties associated with these algorithms are estimated through an approximate procedure that is not meant to be used in a physics analysis, but is appropriate for the level of precision required for this study. The most performant algorithms are found to have the largest uncertainties, motivating the development of methods to reduce these uncertainties without compromising performance. To enable such efforts in the wider scientific community, the datasets used in this paper are made publicly available.

Original languageEnglish
Article numberP08018
JournalJournal of Instrumentation
Volume19
Issue number8
DOIs
StatePublished - 1 Aug 2024

Funding

FundersFunder number
Ministerio de Ciencia, Innovación y Universidades
BSF-NSF
Australian Research Council
DRAC
La Caixa Banking Foundation
Centre National pour la Recherche Scientifique et Technique
Fundação para a Ciência e a Tecnologia
European Union, Future Artificial Intelligence Research
Cooperative Research Centres, Australian Government Department of Industry
Center for Advancing Research Impact in Society
National Science Foundation
CEA-DRF
Science and Technology Facilities Council
Horizon 2020, ICSC-NextGenerationEU
HORIZON EUROPE Marie Sklodowska-Curie Actions
INFN-CNAF
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Ministry of Science and Technology, Taiwan
Israel Science Foundation
Wallenberg Foundation
Leverhulme Trust
Baden-Württemberg Stiftung
MVZI
PROMETEO
Neubauer Family Foundation
Staatssekretariat für Bildung, Forschung und Innovation
IDUB AGH
Generalitat de Catalunya
Instituto Nazionale di Fisica Nucleare
Bundesministerium für Wissenschaft, Forschung und Wirtschaft
Austrian Science Fund
Yerevan Physics Institute
Agencia Nacional de Investigación y Desarrollo
Bundesministerium für Bildung und Forschung
Helmholtz-Gemeinschaft
Danmarks Grundforskningsfond
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Forskningsrådet om Hälsa, Arbetsliv och Välfärd
Karlsruhe Institute of Technology
Canarie
GridKA
Horizon 2020 Framework Programme
Göran Gustafssons Stiftelser
European Commission
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
European Cooperation in Science and Technology
EU-ESF
International Council of Shopping Centers
RGC
Fundação de Amparo à Pesquisa do Estado de São Paulo
PRIMUS
Institutul de Fizică Atomică
Natural Sciences and Engineering Research Council of Canada
Nella and Leon Benoziyo Center for Neurological Diseases, Weizmann Institute of Science
GenT Programmes Generalitat Valenciana, Spain
National Science and Technology Council
Irish Rugby Football Union
Cantons of Bern and Geneva
Chinese Academy of Sciences
Defence Science Institute
MNE
Agencia Nacional de Promoción Científica y Tecnológica
Royal Society
Minerva Foundation
CERN-CZ
National Research Foundation
Ministerstwo Edukacji i Nauki
Generalitat Valenciana
CERN
National Research Council Canada
Brookhaven National Laboratory
Alexander von Humboldt-Stiftung
Multiple Sclerosis Scientific Research Foundation
Caring Futures Institute, Flinders University
British Columbia Knowledge Development Fund
Ministry of Education, Culture, Sports, Science and Technology
UK Research and Innovation
Australian Education International, Australian Government
Fondo Nacional de Desarrollo Científico y Tecnológico1230987, 1230812, 1240864
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen ForschungRPG-2020-004, PCEFP2-194658, NIF-R1-231091
FAIR-NextGenerationEUPE00000013
Narodowa Agencja Wymiany AkademickiejPPN/PPO/2020/1/00002/U/00001
Deutsche ForschungsgemeinschaftDFG - CR 312/5-2, DFG - 469666862
H2020 European Research CouncilERC - 101002463
Japan Society for the Promotion of ScienceJP23KK0245, JP22H04944, JP22H01227, JP22KK0227
Ministerio de Ciencia e InnovaciónRYC2021-031273-I, RYC2022-038164-I, PCI2022-135018-2, RYC2020-030254-I, RYC2019-028510-I, PID2021- 125273NB
Narodowe Centrum NaukiUMO2022/47/O/ST2/00148, UMO-2020/37/B/ST2/01043, UMO-2019/34/E/ST2/00393, UMO-2021/40/C/ST2/00187, 2021/42/E/ST2/00350, 2022/47/B/ST2/03059, UMO-2023/49/B/ST2/04085
Ministero dell’Istruzione, dell’Università e della RicercaPRIN - 20223N7F8K - PNRR M4.C2.1.1
NDGFCC-IN2P3
Investissements d'Avenir LabexANR-11-LABX-0012
The Slovenian Research and Innovation AgencyJ1-3010
Ministerstvo Školství, Mládeže a TělovýchovyPRIMUS/21/SCI/017, CZ.02.01.01/00/22-008/0004632
DNSRCIN2P3-CNRS
GenT Programmes Generalitat ValencianaCIDEGENT/2019/027
Knut och Alice Wallenbergs StiftelseKAW 2022.0358, KAW 2018.0157, KAW 2018.0458, KAW 2019.0447
U.S. Department of EnergyECA DE-AC02-76SF00515
European Research Council101089007, 948254
MUCCACHIST-ERA-19-XAI-00
Norges ForskningsrådRCN-314472
Grantová Agentura České RepublikyGACR - 24-11373S
Ministry of Science and Technology of the People's Republic of ChinaMOST-2023YFA1605700
National Natural Science Foundation of China12275265, NSFC12075060, 12175119
European Regional Development FundIDIFEDER/2018/048
Agence Nationale de la RechercheANR-20-CE31-0013, ANR-22-EDIR-0002, ANR-21-CE31-0013, ANR-21-CE31-0022
VetenskapsrådetVR 2018-00482, 2021-03651, VR 2022-04683, VR 2023-03403, VR 2022-03845, 2023-04654

    Keywords

    • Analysis and statistical methods
    • Performance of High Energy Physics Detectors

    Fingerprint

    Dive into the research topics of 'Accuracy versus precision in boosted top tagging with the ATLAS detector'. Together they form a unique fingerprint.

    Cite this