Accuracy of schemes with nonuniform meshes for compressible fluid flows

Eli Turkel*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


We consider the accuracy of the space discretization for time-dependent problems when a nonuniform mesh is used. We show that many schemes reduce to first-order accuracy while a popular finite volume scheme is even inconsistent for general grids. This accuracy is based on physical variables. However, when accuracy is measured in computational variables then second-order accuracy can be obtained. This is meaningful only if the mesh accurately reflects the properties of the solution. In addition we analyze the stability properties of some improved accurate schemes and show that they also allow for larger time steps when Runge-Kutta type methods are used to advance in time.

Original languageEnglish
Pages (from-to)529-550
Number of pages22
JournalApplied Numerical Mathematics
Issue number6
StatePublished - Dec 1986


Dive into the research topics of 'Accuracy of schemes with nonuniform meshes for compressible fluid flows'. Together they form a unique fingerprint.

Cite this