Accessing Bioactive Hydrazones by the Hydrohydrazination of Terminal Alkynes Catalyzed by Gold(I) Acyclic Aminooxy Carbene Complexes and Their Gold(I) Arylthiolato and Gold(III) Tribromo Derivatives: A Combined Experimental and Computational Study

Jyoti Singh, Sunita Sharma, A. P. Prakasham, Gopalan Rajaraman*, Prasenjit Ghosh*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Hydrohydrazination of terminal alkynes with hydrazides yielding hydrazones 5-14 were successfully catalyzed by a series of gold(I) acyclic aminooxy carbene complexes of the type [{(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)}methylidene]AuCl, where R2 = H, R1 = Me (1b); R2 = H, R1 = Cy (2b); R2 = t-Bu, R1 = Me (3b); R2 = t-Bu, R1 = Cy (4b). The mass spectrometric evidence corroborated the existence of the catalytically active solvent-coordinated [(AAOC)Au(CH3CN)]SbF6 (1-4)A species and the acetylene-bound [(AAOC)Au(HC≡CPhMe)]SbF6 (3B) species of the proposed catalysis cycle. The hydrohydrazination reaction was successfully employed in synthesizing several bioactive hydrazone compounds (15-18) with anticonvulsant properties using a representative precatalyst (2b). The DFT studies favored the 4-ethynyltoluene (HC≡CPhMe) coordination pathway over the p-toluenesulfonyl hydrazide (NH2NHSO2C6H4CH3) coordination pathway, and that proceeded by a crucial intermolecular hydrazide-assisted proton transfer step. The gold(I) complexes (1-4)b were synthesized from the {[(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)]CH}+OTf- (1-4)a by treatment with (Me2S)AuCl in the presence of NaH as a base. The reactivity studies of (1-4)b yielded the gold(III) [{(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)}methylidene]AuBr3 (1-4)c complexes upon reaction with molecular bromine and the gold(I) perfluorophenylthiolato derivatives, [{(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)}methylidene]AuSC6F5 (1-4)d, upon treatment with C6F5SH.

Original languageEnglish
Pages (from-to)21042-21073
Number of pages32
JournalACS Omega
Volume8
Issue number23
DOIs
StatePublished - 13 Jun 2023
Externally publishedYes

Fingerprint

Dive into the research topics of 'Accessing Bioactive Hydrazones by the Hydrohydrazination of Terminal Alkynes Catalyzed by Gold(I) Acyclic Aminooxy Carbene Complexes and Their Gold(I) Arylthiolato and Gold(III) Tribromo Derivatives: A Combined Experimental and Computational Study'. Together they form a unique fingerprint.

Cite this