Abnormalities in lipoprotein metabolism in Gaucher type 1 disease

Ngoc And Le, Joyce C. Gibson, Ardon Rubinstein, Gregory A. Grabowski, Henry N. Ginsberg

Research output: Contribution to journalArticlepeer-review


We have previously described an association between Gaucher type 1 disease and reduced levels of total, low density lipoprotein (LDL), and high density lipoprotein (HDL) cholesterol. Plasma concentrations of apolipoprotein B and apolipoprotein AI were reduced in these subjects, while plasma apolipoprotein E (apoE), which can be synthesized and secreted by macrophages, was increased. To study the pathophysiologic basis for these changes in lipoprotein and apolipoprotein levels, we studied very low density lipoprotein (VLDL), LDL, and HDL metabolism in-depth in four subjects with Gaucher disease. Gel filtration of their plasma revealed that apoE was present in essentially a single population of lipoproteins in the large HLD range. In subject no. 4, studied presplenectomy and post-splenectomy, plasma apoE levels fell after surgery in association with a redistribution of apoE among the plasma lipoproteins to a pattern seen in normal subjects. Determination of the rates of secretion and catabolism of VLDL apoB and triglyceride were within normal limits. The reduced plasma levels of LDL and HDL cholesterol, and of both plasma apoB and apoAI, were associated with increased fractional catabolic rates of these apolipoproteins in LDL and HDL. These results indicate that the hypocholesterolemia present in subjects with Gaucher type 1 disease is associated with increased fractional catabolism of LDL and HDL. These findings, together with the evidence for alternations in plasma apoE metabolism in this disorder, suggest a role for the macrophage as the basis for these abnormalities.

Original languageEnglish
Pages (from-to)240-245
Number of pages6
JournalMetabolism: Clinical and Experimental
Issue number3
StatePublished - Mar 1988
Externally publishedYes


Dive into the research topics of 'Abnormalities in lipoprotein metabolism in Gaucher type 1 disease'. Together they form a unique fingerprint.

Cite this