TY - JOUR
T1 - Abhyankar's affine arithmetic conjecture for the symmetric and alternating groups
AU - Entin, Alexei
AU - Pirani, Noam
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2024/5
Y1 - 2024/5
N2 - We prove that for any prime p>2, q=pν a power of p, n≥p and G=Sn or G=An (symmetric or alternating group), there exists a Galois extension K/Fq(T) ramified only over ∞ with Gal(K/Fq(T))=G. This confirms a conjecture of Abhyankar for the case of symmetric and alternating groups over finite fields of odd characteristic.
AB - We prove that for any prime p>2, q=pν a power of p, n≥p and G=Sn or G=An (symmetric or alternating group), there exists a Galois extension K/Fq(T) ramified only over ∞ with Gal(K/Fq(T))=G. This confirms a conjecture of Abhyankar for the case of symmetric and alternating groups over finite fields of odd characteristic.
KW - Function fields
KW - Galois theory
KW - Ramification
UR - http://www.scopus.com/inward/record.url?scp=85176452193&partnerID=8YFLogxK
U2 - 10.1016/j.jpaa.2023.107561
DO - 10.1016/j.jpaa.2023.107561
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85176452193
SN - 0022-4049
VL - 228
JO - Journal of Pure and Applied Algebra
JF - Journal of Pure and Applied Algebra
IS - 5
M1 - 107561
ER -