TY - JOUR
T1 - A Wavelet Plancherel Theory with Application to Multipliers and Sparse Approximations
AU - Levie, Ron
AU - Sochen, Nir
N1 - Publisher Copyright:
© 2022 Taylor & Francis Group, LLC.
PY - 2022
Y1 - 2022
N2 - We introduce an extension of continuous wavelet theory that enables an efficient implementation of multiplicative operators in the coefficient space. In the new theory, the signal space is embedded in a larger abstract signal space–the so called window–signal space. There is a canonical extension of the wavelet transform to an isometric isomorphism between the window–signal space and the coefficient space. Hence, the new framework is called a wavelet-Plancherel theory, and the extended wavelet transform is called the wavelet-Plancherel transform. Since the wavelet-Plancherel transform is an isometric isomorphism, any operation in the coefficient space can be pulled-back to an operation in the window–signal space. It is then possible to improve the computational complexity of methods that involve a multiplicative operator in the coefficient space, by performing all computations directly in the window–signal space. As one example application, we show how continuous wavelet multipliers (also called Calderón–Toeplitz operators), with polynomial symbols, can be implemented with linear complexity in the resolution of the 1D signal. As another example, we develop a framework for efficiently computing greedy sparse approximations to signals based on elements of continuous wavelet systems.
AB - We introduce an extension of continuous wavelet theory that enables an efficient implementation of multiplicative operators in the coefficient space. In the new theory, the signal space is embedded in a larger abstract signal space–the so called window–signal space. There is a canonical extension of the wavelet transform to an isometric isomorphism between the window–signal space and the coefficient space. Hence, the new framework is called a wavelet-Plancherel theory, and the extended wavelet transform is called the wavelet-Plancherel transform. Since the wavelet-Plancherel transform is an isometric isomorphism, any operation in the coefficient space can be pulled-back to an operation in the window–signal space. It is then possible to improve the computational complexity of methods that involve a multiplicative operator in the coefficient space, by performing all computations directly in the window–signal space. As one example application, we show how continuous wavelet multipliers (also called Calderón–Toeplitz operators), with polynomial symbols, can be implemented with linear complexity in the resolution of the 1D signal. As another example, we develop a framework for efficiently computing greedy sparse approximations to signals based on elements of continuous wavelet systems.
KW - Continuous wavelet
KW - Plancherel theorem
KW - matching pursuit
KW - sparse decomposition
KW - wavelet multiplier
UR - http://www.scopus.com/inward/record.url?scp=85134041867&partnerID=8YFLogxK
U2 - 10.1080/01630563.2022.2060253
DO - 10.1080/01630563.2022.2060253
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85134041867
SN - 0163-0563
VL - 43
SP - 1303
EP - 1400
JO - Numerical Functional Analysis and Optimization
JF - Numerical Functional Analysis and Optimization
IS - 11
ER -