TY - JOUR
T1 - A Vision Transformer Model for the Prediction of Fatal Arrhythmic Events in Patients with Brugada Syndrome
AU - Randazzo, Vincenzo
AU - Caligari, Silvia
AU - Pasero, Eros
AU - Giustetto, Carla
AU - Saglietto, Andrea
AU - Bertarello, William
AU - Averbuch, Amir
AU - Marcus-Kalish, Mira
AU - Zheludev, Valery
AU - Gaita, Fiorenzo
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/2
Y1 - 2025/2
N2 - Brugada syndrome (BrS) is an inherited electrical cardiac disorder that is associated with a higher risk of ventricular fibrillation (VF) and sudden cardiac death (SCD) in patients without structural heart disease. The diagnosis is based on the documentation of the typical pattern in the electrocardiogram (ECG) characterized by a J-point elevation of ≥2 mm, coved-type ST-segment elevation, and negative T wave in one or more right precordial leads, called type 1 Brugada ECG. Risk stratification is particularly difficult in asymptomatic cases. Patients who have experienced documented VF are generally recommended to receive an implantable cardioverter defibrillator to lower the likelihood of sudden death due to recurrent episodes. However, for asymptomatic individuals, the most appropriate course of action remains uncertain. Accurate risk prediction is critical to avoiding premature deaths and unnecessary treatments. Due to the challenges associated with experimental research on human cardiac tissue, alternative techniques such as computational modeling and deep learning-based artificial intelligence (AI) are becoming increasingly important. This study introduces a vision transformer (ViT) model that leverages 12-lead ECG images to predict potentially fatal arrhythmic events in BrS patients. This dataset includes a total of 278 ECGs, belonging to 210 patients which have been diagnosed with Brugada syndrome, and it is split into two classes: event and no event. The event class contains 94 ECGs of patients with documented ventricular tachycardia, ventricular fibrillation, or sudden cardiac death, while the no event class is composed of 184 ECGs used as the control group. At first, the ViT is trained on a balanced dataset, achieving satisfactory results (89% accuracy, 94% specificity, 84% sensitivity, and 89% F1-score). Then, the discarded no event ECGs are attached to additional 30 event ECGs, extracted by a 24 h recording of a singular individual, composing a new test set. Finally, the use of an optimized classification threshold improves the predictions on an unbalanced set of data (74% accuracy, 95% negative predictive value, and 90% sensitivity), suggesting that the ECG signal can reveal key information for the risk stratification of patients with Brugada syndrome.
AB - Brugada syndrome (BrS) is an inherited electrical cardiac disorder that is associated with a higher risk of ventricular fibrillation (VF) and sudden cardiac death (SCD) in patients without structural heart disease. The diagnosis is based on the documentation of the typical pattern in the electrocardiogram (ECG) characterized by a J-point elevation of ≥2 mm, coved-type ST-segment elevation, and negative T wave in one or more right precordial leads, called type 1 Brugada ECG. Risk stratification is particularly difficult in asymptomatic cases. Patients who have experienced documented VF are generally recommended to receive an implantable cardioverter defibrillator to lower the likelihood of sudden death due to recurrent episodes. However, for asymptomatic individuals, the most appropriate course of action remains uncertain. Accurate risk prediction is critical to avoiding premature deaths and unnecessary treatments. Due to the challenges associated with experimental research on human cardiac tissue, alternative techniques such as computational modeling and deep learning-based artificial intelligence (AI) are becoming increasingly important. This study introduces a vision transformer (ViT) model that leverages 12-lead ECG images to predict potentially fatal arrhythmic events in BrS patients. This dataset includes a total of 278 ECGs, belonging to 210 patients which have been diagnosed with Brugada syndrome, and it is split into two classes: event and no event. The event class contains 94 ECGs of patients with documented ventricular tachycardia, ventricular fibrillation, or sudden cardiac death, while the no event class is composed of 184 ECGs used as the control group. At first, the ViT is trained on a balanced dataset, achieving satisfactory results (89% accuracy, 94% specificity, 84% sensitivity, and 89% F1-score). Then, the discarded no event ECGs are attached to additional 30 event ECGs, extracted by a 24 h recording of a singular individual, composing a new test set. Finally, the use of an optimized classification threshold improves the predictions on an unbalanced set of data (74% accuracy, 95% negative predictive value, and 90% sensitivity), suggesting that the ECG signal can reveal key information for the risk stratification of patients with Brugada syndrome.
KW - Brugada syndrome
KW - deep learning
KW - electrocardiogram
KW - risk stratification
KW - sudden cardiac death
KW - vision transformer
UR - http://www.scopus.com/inward/record.url?scp=85218260056&partnerID=8YFLogxK
U2 - 10.3390/s25030824
DO - 10.3390/s25030824
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 39943462
AN - SCOPUS:85218260056
SN - 1424-3210
VL - 25
JO - Sensors
JF - Sensors
IS - 3
M1 - 824
ER -