A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment

The ATLAS collaboration

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

This paper describes a strategy for a general search used by the ATLAS Collaboration to find potential indications of new physics. Events are classified according to their final state into many event classes. For each event class an automated search algorithm tests whether the data are compatible with the Monte Carlo simulated expectation in several distributions sensitive to the effects of new physics. The significance of a deviation is quantified using pseudo-experiments. A data selection with a significant deviation defines a signal region for a dedicated follow-up analysis with an improved background expectation. The analysis of the data-derived signal regions on a new dataset allows a statistical interpretation without the large look-elsewhere effect. The sensitivity of the approach is discussed using Standard Model processes and benchmark signals of new physics. As an example, results are shown for 3.2 fb- 1 of proton–proton collision data at a centre-of-mass energy of 13 TeV collected with the ATLAS detector at the LHC in 2015, in which more than 700 event classes and more than 10 5 regions have been analysed. No significant deviations are found and consequently no data-derived signal regions for a follow-up analysis have been defined.

Original languageEnglish
Article number120
JournalEuropean Physical Journal C
Volume79
Issue number2
DOIs
StatePublished - 1 Feb 2019

Funding

FundersFunder number
Not addedST/J005533/1, ST/K001310/1, ST/L006162/1, ST/N000447/1, ST/J004804/1, ST/N000307/1, ST/L003449/1, ST/H001158/2, ST/K001329/1, ST/N000420/1
AvH Foundation
BSF-NSF
Benoziyo Center, Israel
CEA-DRF/IRFU
COLCIEN-CIAS
Cantons of Bern and Geneva
DNSRCIN2P3-CNRS
DST/NRF
EU-ESF
MES of Russia
MESTD
MIZŠ
MNE/IFA
MSMT
MSSR
RGC
VSC CR
National Science Foundation
U.S. Department of Energy
H2020 Marie Skłodowska-Curie Actions
Arizona-Nevada Academy of Science
CERN
National Research Council
College of Arts and Sciences, University of Nebraska-Lincoln
Glycemic Index Foundation
Natural Sciences and Engineering Research Council of Canada
Science and Technology Facilities CouncilST/M000753/1, GRIDPP
Leverhulme Trust
Royal Society
European Research Council
European Cooperation in Science and Technology
Australian Research Council
Singapore Eye Research Institute
Helmholtz-Gemeinschaft
Deutsche Forschungsgemeinschaft
Agence Nationale de la Recherche
Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Danmarks Grundforskningsfond
Canada Foundation for Innovation
Fundação de Amparo à Pesquisa do Estado de São Paulo
National Natural Science Foundation of China
Fundação para a Ciência e a Tecnologia
Bundesministerium für Bildung und Forschung
Austrian Science Fund
Comisión Nacional de Investigación Científica y Tecnológica
Agencia Nacional de Promoción Científica y Tecnológica
Ministerstvo Zdravotnictví Ceské Republiky
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Ministerio de Economía y Competitividad
Bundesministerium für Wissenschaft, Forschung und Wirtschaft
General Secretariat for Research and Technology
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Ministry of Science and Technology
Joint Institute for Nuclear Research
Israel Science Foundation
Instituto Nazionale di Fisica Nucleare
Narodowe Centrum Nauki
Javna Agencija za Raziskovalno Dejavnost RS
Ministerstwo Nauki i Szkolnictwa Wyższego
Centre National pour la Recherche Scientifique et Technique
British Columbia Knowledge Development Fund
European Regional Development Fund
Institut Nacional d'Educacio Fisica de Catalunya, Generalitat de Catalunya
Marianne and Marcus Wallenberg Foundation
National Research Center "Kurchatov Institute"
Ministry of Health of the Russian Federation

    Fingerprint

    Dive into the research topics of 'A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment'. Together they form a unique fingerprint.

    Cite this