TY - JOUR
T1 - A Spectral Perspective of DNN Robustness to Label Noise
AU - Bar, Oshrat
AU - Drory, Amnon
AU - Giryes, Raja
N1 - Publisher Copyright:
Copyright © 2022 by the author(s)
PY - 2022
Y1 - 2022
N2 - Deep networks usually require a massive amount of labeled data for their training. Yet, such data may include some mistakes in the labels. Interestingly, networks have been shown to be robust to such errors. This work uses spectral analysis of their learned mapping to provide an explanation for their robustness. In particular, we relate the smoothness regularization that usually exists in conventional training to the attenuation of high frequencies, which mainly characterize noise. By using a connection between the smoothness and the spectral norm of the network weights, we suggest that one may further improve robustness via spectral normalization. Empirical experiments validate our claims and show the advantage of this normalization for classification with label noise.
AB - Deep networks usually require a massive amount of labeled data for their training. Yet, such data may include some mistakes in the labels. Interestingly, networks have been shown to be robust to such errors. This work uses spectral analysis of their learned mapping to provide an explanation for their robustness. In particular, we relate the smoothness regularization that usually exists in conventional training to the attenuation of high frequencies, which mainly characterize noise. By using a connection between the smoothness and the spectral norm of the network weights, we suggest that one may further improve robustness via spectral normalization. Empirical experiments validate our claims and show the advantage of this normalization for classification with label noise.
UR - http://www.scopus.com/inward/record.url?scp=85163098437&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85163098437
SN - 2640-3498
VL - 151
SP - 3732
EP - 3752
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 25th International Conference on Artificial Intelligence and Statistics, AISTATS 2022
Y2 - 28 March 2022 through 30 March 2022
ER -