TY - JOUR
T1 - A simplified method for detection of N-terminal valine adducts in patients receiving treosulfan
AU - Boysen, Gunnar
AU - Shimoni, Avichai
AU - Danylesko, Ivetta
AU - Varda-Bloom, Nira
AU - Nagler, Arnon
N1 - Publisher Copyright:
© 2019 John Wiley & Sons, Ltd.
PY - 2019/11/15
Y1 - 2019/11/15
N2 - RATIONALE: Treosulfan is a substance that is being studied as part of the conditioning regimen given prior to allogeneic stem cell transplantation in patients with hematological malignancies. It is known to decompose into 1,2:3,4-diepoxybutane (DEB) under physiologic conditions. In this study, we investigate whether N-terminal valine adducts can be utilized to monitor differences in DEB formation of patients receiving treosulfan as part of the conditioning regimen for transplantation. METHODS: Blood samples were collected from a group of 14 transplant recipients and analyzed for N,N-(2,3-dihydroxy-1,4-butadiyl)valine (pyr-Val) and 2,3,4-trihydroxybutylvaline (THB-Val) adducts as biomarkers for drug uptake and metabolism before treosulfan treatment and 6 days after treatment. RESULTS: A new direct injection liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated prior to clinical analysis. The assay precision was determined by 3 replicate analyses on 3 individual days using control globin spiked with known amounts of pyr-Val and THB-Val. The intra- and inter-day precision coefficients of variance (CVs) and accuracy were < 10% and 15%, respectively. In clinical specimens, the means ± SD of pyr-Val and THB-Val background were 0.29 ± 0.10 pmol/g HB and 5.17 ± 1.7 pmol/g HB, respectively. CONCLUSIONS: These values are similar to those found previously. Treosulfan treatment leads to a significant increase in pyr-Val and THB-Val adducts in each patient (Student's t-test p <0.0001). The mean ± SD amounts of adduct formed were 245.3 ± 89.6 and 210 ± 78.5 pmol/g globin for pyr-Val and THB-Val, respectively. Importantly, these results show that this direct injection method can quantitate both background and treosulfan-induced pyr-Val and THB-Val N-terminal valine globin adducts in humans.
AB - RATIONALE: Treosulfan is a substance that is being studied as part of the conditioning regimen given prior to allogeneic stem cell transplantation in patients with hematological malignancies. It is known to decompose into 1,2:3,4-diepoxybutane (DEB) under physiologic conditions. In this study, we investigate whether N-terminal valine adducts can be utilized to monitor differences in DEB formation of patients receiving treosulfan as part of the conditioning regimen for transplantation. METHODS: Blood samples were collected from a group of 14 transplant recipients and analyzed for N,N-(2,3-dihydroxy-1,4-butadiyl)valine (pyr-Val) and 2,3,4-trihydroxybutylvaline (THB-Val) adducts as biomarkers for drug uptake and metabolism before treosulfan treatment and 6 days after treatment. RESULTS: A new direct injection liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated prior to clinical analysis. The assay precision was determined by 3 replicate analyses on 3 individual days using control globin spiked with known amounts of pyr-Val and THB-Val. The intra- and inter-day precision coefficients of variance (CVs) and accuracy were < 10% and 15%, respectively. In clinical specimens, the means ± SD of pyr-Val and THB-Val background were 0.29 ± 0.10 pmol/g HB and 5.17 ± 1.7 pmol/g HB, respectively. CONCLUSIONS: These values are similar to those found previously. Treosulfan treatment leads to a significant increase in pyr-Val and THB-Val adducts in each patient (Student's t-test p <0.0001). The mean ± SD amounts of adduct formed were 245.3 ± 89.6 and 210 ± 78.5 pmol/g globin for pyr-Val and THB-Val, respectively. Importantly, these results show that this direct injection method can quantitate both background and treosulfan-induced pyr-Val and THB-Val N-terminal valine globin adducts in humans.
UR - http://www.scopus.com/inward/record.url?scp=85074184418&partnerID=8YFLogxK
U2 - 10.1002/rcm.8509
DO - 10.1002/rcm.8509
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 31240802
AN - SCOPUS:85074184418
SN - 0951-4198
VL - 33
SP - 1635
EP - 1642
JO - Rapid Communications in Mass Spectrometry
JF - Rapid Communications in Mass Spectrometry
IS - 21
ER -