TY - JOUR
T1 - A simple index predicting 30-day readmissions in acutely hospitalized patients
AU - Froom, Paul
AU - Shimoni, Zvi
AU - Benbassat, Jochanan
N1 - Publisher Copyright:
© 2020 John Wiley & Sons Ltd
PY - 2021/8
Y1 - 2021/8
N2 - Background: There are various models attempting to predict 30-day readmissions of acutely admitted internal medicine patients. However, it is uncertain how to create a parsimonious index that has equivalent predictive ability and can be extrapolated to other settings. Methods: We developed a regression equation to predict 30-day readmissions from all acute hospitalizations in internal medicine departments in a regional hospital in 2015-2016 and validated the model in 2019. The independent (predictor) variables were age, past hospitalizations, admission laboratory test results, length of stay in hospital and discharge diagnoses. We compared the predictive value of a logistic regression model and index that included discharge diagnoses and admission laboratory test results with one that included only age, past hospitalizations, and hospital length of stay. Results: Readmission rates were associated with age, time since last hospitalization, number of previous hospitalizations, and length of stay, as well as with a diagnosis of chronic obstructive lung disease and congestive heart failure and several laboratory data. Logistic regressions of the independent variables for 30-day readmission rates were similar in 2015-2016 and 2019. An index was derived from number of previous admissions to hospitals, time since last admission, age, and length of stay. In 2019, for every unit of the index, the odds of readmission increased by 1.33 (95% CI- 1.30-1.37), and ranged from 2.1% to 37.1%. Addition of discharge diagnoses and laboratory variables did not significantly improve the risk differentiation of the index. The c-statistic for the final parsimonious model was 0.704. Conclusions: An index derived from the number of previous hospital admissions, days since last admission, age, and length of stay in days differentiated between the risks of readmission within 30 days without the need for discharge diagnosis and laboratory variables.
AB - Background: There are various models attempting to predict 30-day readmissions of acutely admitted internal medicine patients. However, it is uncertain how to create a parsimonious index that has equivalent predictive ability and can be extrapolated to other settings. Methods: We developed a regression equation to predict 30-day readmissions from all acute hospitalizations in internal medicine departments in a regional hospital in 2015-2016 and validated the model in 2019. The independent (predictor) variables were age, past hospitalizations, admission laboratory test results, length of stay in hospital and discharge diagnoses. We compared the predictive value of a logistic regression model and index that included discharge diagnoses and admission laboratory test results with one that included only age, past hospitalizations, and hospital length of stay. Results: Readmission rates were associated with age, time since last hospitalization, number of previous hospitalizations, and length of stay, as well as with a diagnosis of chronic obstructive lung disease and congestive heart failure and several laboratory data. Logistic regressions of the independent variables for 30-day readmission rates were similar in 2015-2016 and 2019. An index was derived from number of previous admissions to hospitals, time since last admission, age, and length of stay. In 2019, for every unit of the index, the odds of readmission increased by 1.33 (95% CI- 1.30-1.37), and ranged from 2.1% to 37.1%. Addition of discharge diagnoses and laboratory variables did not significantly improve the risk differentiation of the index. The c-statistic for the final parsimonious model was 0.704. Conclusions: An index derived from the number of previous hospital admissions, days since last admission, age, and length of stay in days differentiated between the risks of readmission within 30 days without the need for discharge diagnosis and laboratory variables.
KW - inpatient care
KW - quality of care
KW - readmissions
UR - http://www.scopus.com/inward/record.url?scp=85097008976&partnerID=8YFLogxK
U2 - 10.1111/jep.13516
DO - 10.1111/jep.13516
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 33269525
AN - SCOPUS:85097008976
SN - 1356-1294
VL - 27
SP - 942
EP - 948
JO - Journal of Evaluation in Clinical Practice
JF - Journal of Evaluation in Clinical Practice
IS - 4
ER -