A shallow, short-lived meso-β cyclone over the Gulf of Antalya, eastern Mediterranean

P. Alpert*, M. Tsidulko, D. Itzigsohn

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The physical mechanisms of a shallow short-lived meso-β scale cyclone over the Gulf of Antalya, eastern Mediterranean, are studied, with the PSU/NCAR MM4 and MM5 mesoscale models. Although the thin stratus clouds within this cyclone as observed from satellites are not resolved even by the 3 km nesting, the dynamical evolution and the 3-D structure are well captured. The small cyclone or eddy develops before sunrise following convergence of the strong katabatic winds from the nearby steep Anatolya mountains slopes with 2 km peaks. The eddy's lifetime is of the order of 5-7 h and it quickly dissipates before noon. Based on the simulated vertical winds, vorticity, humidity as well as the IR top cloud temperatures, the depth of the eddy is estimated to be 500-800 m. It is shown that the divergence term in the vorticity equation is dominant during the eddy's generation. Lagrangian analysis for the trajectories of several air-masses that were identified as crucial for the eddy's development, reveals a sharp increase both in the PV (by 7-8 units), and in the specific humidity, 3.5 to 7 g/kg, as the air-parcels descend from about 840 to 980 hPa. This air-parcel analysis also shows that the diabatic contribution is quite important. Factor separation experiments confirm that pure topography is the major factor and the synergistic effect of sea-fluxes and topography contributes about 20% of the total vorticity. The Antalya cyclone is common during July to September morning hours and its frequency of occurrence was estimated from satellite pictures to be about 20%.

Original languageEnglish
Pages (from-to)249-262
Number of pages14
JournalTellus, Series A: Dynamic Meteorology and Oceanography
Volume51
Issue number2
DOIs
StatePublished - Mar 1999

Fingerprint

Dive into the research topics of 'A shallow, short-lived meso-β cyclone over the Gulf of Antalya, eastern Mediterranean'. Together they form a unique fingerprint.

Cite this