TY - JOUR
T1 - A role of microRNAs in cell differentiation during gonad development
AU - Grossman, Hadas
AU - Shalgi, Ruth
N1 - Publisher Copyright:
© Springer International Publishing Switzerland 2016.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - MicroRNAs (miRNAs) are a group of small noncoding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. Widely explored in the ovary, miRNAs were suggested to play a fundamental role in follicles’ assembly, growth, differentiation, and ovulation. In this chapter, we focus on data obtained from mice in which distinct proteins that participate in the biosynthesis of miRNAs were conditionally knocked out from germ cells (spermatogonial cells or oocytes) or gonadal somatic cells (Sertoli or granulosa cells). We detail recent advances in identification of particular miRNAs and their significance in the development and function of male and female gonads. miRNAs can serve as biomarkers and therapeutic agents of pathological conditions; thus, elucidating the branched and complex network of reproduction-related miRNAs will aid understanding of gonads’ physiology and managing reproduction disorders.
AB - MicroRNAs (miRNAs) are a group of small noncoding RNA molecules that play a major role in posttranscriptional regulation of gene expression and are expressed in an organ-specific manner. One miRNA can potentially regulate the expression of several genes, depending on cell type and differentiation stage. miRNAs are differentially expressed in the male and female gonads and have an organ-specific reproductive function. Exerting their affect through germ cells and gonadal somatic cells, miRNAs regulate key proteins necessary for gonad development. The role of miRNAs in the testes is only starting to emerge though they have been shown to be required for adequate spermatogenesis. Widely explored in the ovary, miRNAs were suggested to play a fundamental role in follicles’ assembly, growth, differentiation, and ovulation. In this chapter, we focus on data obtained from mice in which distinct proteins that participate in the biosynthesis of miRNAs were conditionally knocked out from germ cells (spermatogonial cells or oocytes) or gonadal somatic cells (Sertoli or granulosa cells). We detail recent advances in identification of particular miRNAs and their significance in the development and function of male and female gonads. miRNAs can serve as biomarkers and therapeutic agents of pathological conditions; thus, elucidating the branched and complex network of reproduction-related miRNAs will aid understanding of gonads’ physiology and managing reproduction disorders.
UR - http://www.scopus.com/inward/record.url?scp=84976447912&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-31973-5_12
DO - 10.1007/978-3-319-31973-5_12
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84976447912
SN - 0080-1844
VL - 58
SP - 309
EP - 336
JO - Results and Problems in Cell Differentiation
JF - Results and Problems in Cell Differentiation
ER -