TY - JOUR
T1 - A Robust and Novel Linear Fiber Laser Mode-Locked by Nonlinear Polarization Evolution in All-Polarization-Maintaining Fibers
AU - Liu, Xuanyi
AU - Li, Qian
AU - Pan, Denghui
AU - Ye, Feng
AU - Malomed, Boris A.
AU - Fu, H. Y.
N1 - Publisher Copyright:
© 1983-2012 IEEE.
PY - 2021/12/1
Y1 - 2021/12/1
N2 - We demonstrate a novel, robust and compact fiber laser mode-locked by nonlinear polarization evolution (NPE) in polarization-maintaining (PM) fibers. The reflectivity of the artificial saturable absorber (SA) is analyzed to explain the mode-locking mechanism in the laser cavity. Experimentally, three linear laser schemes that feature repetition rates 94 MHz, 124 MHz and 133 MHz are systematically investigated. When the pump power is 1100 mW, the 124-MHz laser cavity delivers highly stable pulses with a single-pulse energy of 0.92 nJ. After the compression, the pulse duration obtained from the 124-MHz fiber laser is 250 fs, while the corresponding transform-limited pulse duration is 124 fs. The highest fundamental repetition rate that could be achieved in our experiment is 133 MHz, as mentioned above. The noise characterization has been performed with different cavity lengths and therefore different net-cavity dispersion. The 68-fs timing jitter and the 0.01% relative intensity noise (RIN) of the 133-MHz fiber laser have been realized integrated from 1 kHz to 10 MHz. Furthermore, the root-mean-square (RMS) power fluctuation is 0.35% in 2 hours, which implies superior stability of the output power. Thus, this linear fiber oscillator provides a competitive low-noise light source for optical applications appropriate for complex environments.
AB - We demonstrate a novel, robust and compact fiber laser mode-locked by nonlinear polarization evolution (NPE) in polarization-maintaining (PM) fibers. The reflectivity of the artificial saturable absorber (SA) is analyzed to explain the mode-locking mechanism in the laser cavity. Experimentally, three linear laser schemes that feature repetition rates 94 MHz, 124 MHz and 133 MHz are systematically investigated. When the pump power is 1100 mW, the 124-MHz laser cavity delivers highly stable pulses with a single-pulse energy of 0.92 nJ. After the compression, the pulse duration obtained from the 124-MHz fiber laser is 250 fs, while the corresponding transform-limited pulse duration is 124 fs. The highest fundamental repetition rate that could be achieved in our experiment is 133 MHz, as mentioned above. The noise characterization has been performed with different cavity lengths and therefore different net-cavity dispersion. The 68-fs timing jitter and the 0.01% relative intensity noise (RIN) of the 133-MHz fiber laser have been realized integrated from 1 kHz to 10 MHz. Furthermore, the root-mean-square (RMS) power fluctuation is 0.35% in 2 hours, which implies superior stability of the output power. Thus, this linear fiber oscillator provides a competitive low-noise light source for optical applications appropriate for complex environments.
KW - Artificial saturable absorber
KW - fiber laser
KW - nonlinear polarization evolution
UR - http://www.scopus.com/inward/record.url?scp=85116877762&partnerID=8YFLogxK
U2 - 10.1109/JLT.2021.3117000
DO - 10.1109/JLT.2021.3117000
M3 - מאמר
AN - SCOPUS:85116877762
VL - 39
SP - 7509
EP - 7516
JO - Journal of Lightwave Technology
JF - Journal of Lightwave Technology
SN - 0733-8724
IS - 23
ER -