TY - GEN
T1 - A quasi-polynomial time partition oracle for graphs with an excluded minor
AU - Levi, Reut
AU - Ron, Dana
PY - 2013
Y1 - 2013
N2 - Motivated by the problem of testing planarity and related properties, we study the problem of designing efficient partition oracles. A partition oracle is a procedure that, given access to the incidence lists representation of a bounded-degree graph G = (V,E) and a parameter ε, when queried on a vertex v ∈ V, returns the part (subset of vertices) which v belongs to in a partition of all graph vertices. The partition should be such that all parts are small, each part is connected, and if the graph has certain properties, the total number of edges between parts is at most ε|V|. In this work we give a partition oracle for graphs with excluded minors whose query complexity is quasi-polynomial in 1/ε, thus improving on the result of Hassidim et al. (Proceedings of FOCS 2009) who gave a partition oracle with query complexity exponential in 1/ε. This improvement implies corresponding improvements in the complexity of testing planarity and other properties that are characterized by excluded minors as well as sublinear-time approximation algorithms that work under the promise that the graph has an excluded minor.
AB - Motivated by the problem of testing planarity and related properties, we study the problem of designing efficient partition oracles. A partition oracle is a procedure that, given access to the incidence lists representation of a bounded-degree graph G = (V,E) and a parameter ε, when queried on a vertex v ∈ V, returns the part (subset of vertices) which v belongs to in a partition of all graph vertices. The partition should be such that all parts are small, each part is connected, and if the graph has certain properties, the total number of edges between parts is at most ε|V|. In this work we give a partition oracle for graphs with excluded minors whose query complexity is quasi-polynomial in 1/ε, thus improving on the result of Hassidim et al. (Proceedings of FOCS 2009) who gave a partition oracle with query complexity exponential in 1/ε. This improvement implies corresponding improvements in the complexity of testing planarity and other properties that are characterized by excluded minors as well as sublinear-time approximation algorithms that work under the promise that the graph has an excluded minor.
UR - http://www.scopus.com/inward/record.url?scp=84880271240&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-39206-1_60
DO - 10.1007/978-3-642-39206-1_60
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84880271240
SN - 9783642392054
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 709
EP - 720
BT - Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Proceedings
T2 - 40th International Colloquium on Automata, Languages, and Programming, ICALP 2013
Y2 - 8 July 2013 through 12 July 2013
ER -