TY - GEN
T1 - A probabilistic image jigsaw puzzle solver
AU - Cho, Taeg Sang
AU - Avidan, Shai
AU - Freeman, William T.
PY - 2010
Y1 - 2010
N2 - We explore the problem of reconstructing an image from a bag of square, non-overlapping image patches, the jigsaw puzzle problem. Completing jigsaw puzzles is challenging and requires expertise even for humans, and is known to be NP-complete. We depart from previous methods that treat the problem as a constraint satisfaction problem and develop a graphical model to solve it. Each patch location is a node and each patch is a label at nodes in the graph. A graphical model requires a pairwise compatibility term, which measures an affinity between two neighboring patches, and a local evidence term, which we lack. This paper discusses ways to obtain these terms for the jigsaw puzzle problem. We evaluate several patch compatibility metrics, including the natural image statistics measure, and experimentally show that the dissimilarity-based compatibility - measuring the sum-of-squared color difference along the abutting boundary - gives the best results. We compare two forms of local evidence for the graphical model: a sparse-and-accurate evidence and a dense-and-noisy evidence. We show that the sparse-and-accurate evidence, fixing as few as 4-6 patches at their correct locations, is enough to reconstruct images consisting of over 400 patches. To the best of our knowledge, this is the largest puzzle solved in the literature. We also show that one can coarsely estimate the low resolution image from a bag of patches, suggesting that a bag of image patches encodes some geometric information about the original image.
AB - We explore the problem of reconstructing an image from a bag of square, non-overlapping image patches, the jigsaw puzzle problem. Completing jigsaw puzzles is challenging and requires expertise even for humans, and is known to be NP-complete. We depart from previous methods that treat the problem as a constraint satisfaction problem and develop a graphical model to solve it. Each patch location is a node and each patch is a label at nodes in the graph. A graphical model requires a pairwise compatibility term, which measures an affinity between two neighboring patches, and a local evidence term, which we lack. This paper discusses ways to obtain these terms for the jigsaw puzzle problem. We evaluate several patch compatibility metrics, including the natural image statistics measure, and experimentally show that the dissimilarity-based compatibility - measuring the sum-of-squared color difference along the abutting boundary - gives the best results. We compare two forms of local evidence for the graphical model: a sparse-and-accurate evidence and a dense-and-noisy evidence. We show that the sparse-and-accurate evidence, fixing as few as 4-6 patches at their correct locations, is enough to reconstruct images consisting of over 400 patches. To the best of our knowledge, this is the largest puzzle solved in the literature. We also show that one can coarsely estimate the low resolution image from a bag of patches, suggesting that a bag of image patches encodes some geometric information about the original image.
UR - http://www.scopus.com/inward/record.url?scp=77956008537&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2010.5540212
DO - 10.1109/CVPR.2010.5540212
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:77956008537
SN - 9781424469840
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 183
EP - 190
BT - 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
T2 - 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
Y2 - 13 June 2010 through 18 June 2010
ER -