TY - JOUR
T1 - A pilot trial to evaluate the accuracy of a novel non-invasive glucose meter
AU - Schwarz, Yair
AU - Konvalina, Noa
AU - Tirosh, Amir
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/10/1
Y1 - 2021/10/1
N2 - The non-invasive self-monitoring of blood glucose (SMBG) has been the subject of intense investigation over recent decades. We conducted a pilot study designed to examine a novel non-invasive glucometer, the HGR GWave, utilizing radiofrequency (RF) sensing. Blood glucose levels assessed by this HGR prototype were compared to measurements performed by a hexokinase core laboratory assay during an oral glucose tolerance test (oGTT) for 5 subjects with type 2 diabetes. The HGR glucose meter readings were also compared to two Abbot Freestyle® glucose meters, which were also used for calibration. The accuracy of the results was evaluated through the calculation of relative absolute difference (RAD), specified percentage differences between 43 reference glucose measurements, and using comparator measurements. The median RAD was −4.787. We de-tected 79.04%, 92.99% and 97.64% of HGR readings within ±10%, ±15% and ±20% of the reference glucose measurements. The HGR readings had a high correlation with reference lab glucose measurements with R2 = 0.924 (95% CI 0.929–0.979; p < 0.0001). When compared to the Freestyle® glucose meters 94.3% and 100% of the readings were within ±5% and ±10%, with R2 = 0.975 (0.975–0.994; p < 0.0001). The HGR prototype glucose meter was found to be accurate in detecting real-time blood glucose during an oGTT in this small pilot study. A study with a broader range of blood glucose levels is needed to further assess its accuracy and its suitability for clinical use.
AB - The non-invasive self-monitoring of blood glucose (SMBG) has been the subject of intense investigation over recent decades. We conducted a pilot study designed to examine a novel non-invasive glucometer, the HGR GWave, utilizing radiofrequency (RF) sensing. Blood glucose levels assessed by this HGR prototype were compared to measurements performed by a hexokinase core laboratory assay during an oral glucose tolerance test (oGTT) for 5 subjects with type 2 diabetes. The HGR glucose meter readings were also compared to two Abbot Freestyle® glucose meters, which were also used for calibration. The accuracy of the results was evaluated through the calculation of relative absolute difference (RAD), specified percentage differences between 43 reference glucose measurements, and using comparator measurements. The median RAD was −4.787. We de-tected 79.04%, 92.99% and 97.64% of HGR readings within ±10%, ±15% and ±20% of the reference glucose measurements. The HGR readings had a high correlation with reference lab glucose measurements with R2 = 0.924 (95% CI 0.929–0.979; p < 0.0001). When compared to the Freestyle® glucose meters 94.3% and 100% of the readings were within ±5% and ±10%, with R2 = 0.975 (0.975–0.994; p < 0.0001). The HGR prototype glucose meter was found to be accurate in detecting real-time blood glucose during an oGTT in this small pilot study. A study with a broader range of blood glucose levels is needed to further assess its accuracy and its suitability for clinical use.
KW - Glucometer
KW - Non-invasive glucose measurement
KW - Non-invasive glucose meter
KW - Radio frequency
KW - Self-monitoring of blood glucose
UR - http://www.scopus.com/inward/record.url?scp=85116752802&partnerID=8YFLogxK
U2 - 10.3390/s21206704
DO - 10.3390/s21206704
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 34695917
AN - SCOPUS:85116752802
SN - 1424-8220
VL - 21
JO - Sensors
JF - Sensors
IS - 20
M1 - 6704
ER -