TY - JOUR
T1 - A novel phase field method for modeling the fracture of long bones
AU - Shen, Rilin
AU - Waisman, Haim
AU - Yosibash, Zohar
AU - Dahan, Gal
N1 - Publisher Copyright:
© 2019 John Wiley & Sons, Ltd.
PY - 2019/8
Y1 - 2019/8
N2 - A proximal humerus fracture is an injury to the shoulder joint that necessitates medical attention. While it is one of the most common fracture injuries impacting the elder community and those who suffer from traumatic falls or forceful collisions, there are almost no validated computational methods that can accurately model these fractures. This could be due to the complex, inhomogeneous bone microstructure, complex geometries, and the limitations of current fracture mechanics methods. In this paper, we develop a novel phase field method to investigate the proximal humerus fracture. To model the fracture in the inhomogeneous domain, we propose a power-law relationship between bone mineral density and critical energy release rate. The method is validated by an in vitro experiment, in which a human humerus is constrained on both ends while subjected to compressive loads on its head, in the longitudinal direction, that lead to fracture at the anatomical neck. CT scans are employed to acquire the bone geometry and material parameters, from which detailed finite element meshes with inhomogeneous Young modulus distributions are generated. The numerical method, implemented in a high performance computing environment, is used to quantitatively predict the complex 3D brittle fracture of the bone and is shown to be in good agreement with experimental observations. Furthermore, our findings show that the damage is initiated in the trabecular bone-head and propagates outward towards the bone cortex. We conclude that the proposed phase field method is a promising approach to model bone fracture.
AB - A proximal humerus fracture is an injury to the shoulder joint that necessitates medical attention. While it is one of the most common fracture injuries impacting the elder community and those who suffer from traumatic falls or forceful collisions, there are almost no validated computational methods that can accurately model these fractures. This could be due to the complex, inhomogeneous bone microstructure, complex geometries, and the limitations of current fracture mechanics methods. In this paper, we develop a novel phase field method to investigate the proximal humerus fracture. To model the fracture in the inhomogeneous domain, we propose a power-law relationship between bone mineral density and critical energy release rate. The method is validated by an in vitro experiment, in which a human humerus is constrained on both ends while subjected to compressive loads on its head, in the longitudinal direction, that lead to fracture at the anatomical neck. CT scans are employed to acquire the bone geometry and material parameters, from which detailed finite element meshes with inhomogeneous Young modulus distributions are generated. The numerical method, implemented in a high performance computing environment, is used to quantitatively predict the complex 3D brittle fracture of the bone and is shown to be in good agreement with experimental observations. Furthermore, our findings show that the damage is initiated in the trabecular bone-head and propagates outward towards the bone cortex. We conclude that the proposed phase field method is a promising approach to model bone fracture.
KW - crack propagation
KW - humerus fracture
KW - phase field method
KW - proximal
UR - http://www.scopus.com/inward/record.url?scp=85068505284&partnerID=8YFLogxK
U2 - 10.1002/cnm.3211
DO - 10.1002/cnm.3211
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85068505284
SN - 2040-7939
VL - 35
JO - International Journal for Numerical Methods in Biomedical Engineering
JF - International Journal for Numerical Methods in Biomedical Engineering
IS - 8
M1 - e3211
ER -