A novel live attenuated anthrax spore vaccine based on an acapsular Bacillus anthracis Sterne strain with mutations in the htrA, lef and cya genes

Theodor Chitlaru*, Ma'ayan Israeli, Shahar Rotem, Uri Elia, Erez Bar-Haim, Sharon Ehrlich, Ofer Cohen, Avigdor Shafferman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We recently reported the development of a novel, next-generation, live attenuated anthrax spore vaccine based on disruption of the htrA (High Temperature Requirement A) gene in the Bacillus anthracis Sterne veterinary vaccine strain. This vaccine exhibited a highly significant decrease in virulence in murine, guinea pig and rabbit animal models yet preserved the protective value of the parental Sterne strain. Here, we report the evaluation of additional mutations in the lef and cya genes, encoding for the toxin components lethal factor (LF) and edema factor (EF), to further attenuate the SterneΔhtrA strain and improve its compatibility for human use. Accordingly, we constructed seven B. anthracis Sterne-derived strains exhibiting different combinations of mutations in the htrA, cya and lef genes. The various strains were indistinguishable in growth in vitro and in their ability to synthesise the protective antigen (PA, necessary for the elicitation of protection). In the sensitive murine model, we observed a gradual increase (ΔhtrA < ΔhtrAΔcya < ΔhtrAΔlef < ΔhtrAΔlefΔcya) in attenuation – up to 108-fold relative to the parental Sterne vaccine strain. Most importantly, all various SterneΔhtrA derivative strains did not differ in their ability to elicit protective immunity in guinea pigs. Immunisation of guinea pigs with a single dose (109 spores) or double doses (>107 spores) of the most attenuated triple mutant strain SterneΔhtrAlefMUTΔcya induced a robust immune response, providing complete protection against a subsequent respiratory lethal challenge. Partial protection was observed in animals vaccinated with a double dose of as few as 105 spores. Furthermore, protective immune status was maintained in all vaccinated guinea pigs and rabbits for at least 40 and 30 weeks, respectively.

Original languageEnglish
Pages (from-to)6030-6040
Number of pages11
JournalVaccine
Volume35
Issue number44
DOIs
StatePublished - 20 Oct 2017
Externally publishedYes

Keywords

  • Anthrax
  • Anthrax toxins
  • Bacillus anthracis
  • HtrA
  • Live attenuated vaccine

Fingerprint

Dive into the research topics of 'A novel live attenuated anthrax spore vaccine based on an acapsular Bacillus anthracis Sterne strain with mutations in the htrA, lef and cya genes'. Together they form a unique fingerprint.

Cite this