TY - JOUR

T1 - A Note on the Probability of Rectangles for Correlated Binary Strings

AU - Ordentlich, Or

AU - Polyanskiy, Yury

AU - Shayevitz, Ofer

N1 - Publisher Copyright:
© 1963-2012 IEEE.

PY - 2020/12

Y1 - 2020/12

N2 - Consider two sequences of ${n}$ independent and identically distributed fair coin tosses, ${X}=({X}_{1},\ldots,{X}_{n})$ and ${Y}=({Y}_{1},\ldots,{Y}_{n})$ , which are $\rho $ -correlated for each ${j}$ , i.e. $\mathbb {P}[{X}_{j}={Y}_{j}] = {\frac{1+\rho }{ 2}}$. We study the question of how large (small) the probability $\mathbb {P}[{X} \in {A}, {Y}\in {B}]$ can be among all sets ${A},{B}\subset \{0,1\}^{n}$ of a given cardinality. For sets $|{A}|,|{B}| = \Theta (2^{n})$ it is well known that the largest (smallest) probability is approximately attained by concentric (anti-concentric) Hamming balls, and this can be proved via the hypercontractive inequality (reverse hypercontractivity). Here we consider the case of $|{A}|,|{B}| = 2^{\Theta ({n})}$. By applying a recent extension of the hypercontractive inequality of Polyanskiy-Samorodnitsky (J. Functional Analysis, 2019), we show that Hamming balls of the same size approximately maximize $\mathbb {P}[{X} \in {A}, {Y}\in {B}]$ in the regime of $\rho \to 1$. We also prove a similar tight lower bound, i.e. show that for $\rho \to 0$ the pair of opposite Hamming balls approximately minimizes the probability $\mathbb {P}[{X} \in {A}, {Y}\in {B}]$.

AB - Consider two sequences of ${n}$ independent and identically distributed fair coin tosses, ${X}=({X}_{1},\ldots,{X}_{n})$ and ${Y}=({Y}_{1},\ldots,{Y}_{n})$ , which are $\rho $ -correlated for each ${j}$ , i.e. $\mathbb {P}[{X}_{j}={Y}_{j}] = {\frac{1+\rho }{ 2}}$. We study the question of how large (small) the probability $\mathbb {P}[{X} \in {A}, {Y}\in {B}]$ can be among all sets ${A},{B}\subset \{0,1\}^{n}$ of a given cardinality. For sets $|{A}|,|{B}| = \Theta (2^{n})$ it is well known that the largest (smallest) probability is approximately attained by concentric (anti-concentric) Hamming balls, and this can be proved via the hypercontractive inequality (reverse hypercontractivity). Here we consider the case of $|{A}|,|{B}| = 2^{\Theta ({n})}$. By applying a recent extension of the hypercontractive inequality of Polyanskiy-Samorodnitsky (J. Functional Analysis, 2019), we show that Hamming balls of the same size approximately maximize $\mathbb {P}[{X} \in {A}, {Y}\in {B}]$ in the regime of $\rho \to 1$. We also prove a similar tight lower bound, i.e. show that for $\rho \to 0$ the pair of opposite Hamming balls approximately minimizes the probability $\mathbb {P}[{X} \in {A}, {Y}\in {B}]$.

KW - Isoperimetric inequalities

KW - binary adder multiple access channel (MAC)

KW - hypercontractivity

UR - http://www.scopus.com/inward/record.url?scp=85097345586&partnerID=8YFLogxK

U2 - 10.1109/TIT.2020.3018232

DO - 10.1109/TIT.2020.3018232

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:85097345586

VL - 66

SP - 7878

EP - 7886

JO - IEEE Transactions on Information Theory

JF - IEEE Transactions on Information Theory

SN - 0018-9448

IS - 12

M1 - 9171899

ER -