A nonreflectlng boundary condition for discrete acoustic and elastic wave calculations

Dan Kosloff, Ronnie Kosloff

Research output: Contribution to conferencePaperpeer-review

Abstract

One of the nagging problems which appears in the application of discrete solution methods to wave propagation problems is the presence of reflections or wraparound from the boundaries of the numerical mesh. In this paper we describe a scheme for the elimination of these unwanted events which can be applied to a wide class of wave equations and numerical methods. The scheme is first presented as an empirical approach based on a gradual elimination of wave amplitudes along the bondaries of the numerical grid. However, in order to apply the method to implicit and semi-implicit schemes which do not use explicit time stepping, the absorbing boundary condition is rederived and cast in the form of a modified wave equation. This derivation gives the additional benefit of the ability to evaluate the effectiveness of the absorbing boundary a priori, and adjust its parameters without having to make costly computer runs. The absorbing boundary condition is demonstrated with examples from acoustic and elastic wave propagation with the Fourier solution method.

Original languageEnglish
Pages627-628
Number of pages2
StatePublished - 1984
Event1984 Society of Exploration Geophysicists Annual Meeting, SEG 1984 - Atlanta, United States
Duration: 2 Dec 19846 Dec 1984

Conference

Conference1984 Society of Exploration Geophysicists Annual Meeting, SEG 1984
Country/TerritoryUnited States
CityAtlanta
Period2/12/846/12/84

Fingerprint

Dive into the research topics of 'A nonreflectlng boundary condition for discrete acoustic and elastic wave calculations'. Together they form a unique fingerprint.

Cite this