A New Stochastic Process of Prestack Inversion for Rock Property Estimation

Long Yin, Sheng Zhang*, Kun Xiang, Yongqiang Ma, Yongzhen Ji, Ke Chen, Dongyu Zheng

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In order to enrich the current prestack stochastic inversion theory, we propose a prestack stochastic inversion method based on adaptive particle swarm optimization combined with Markov chain Monte Carlo (MCMC). The MCMC could provide a stochastic optimization approach, and, with the APSO, have a better performance in global optimization methods. This method uses logging data to define a preprocessed model space. It also uses Bayesian statistics and Markov chains with a state transition matrix to update and evolve each generation population in the data domain, then adaptive particle swarm optimization is used to find the global optimal value in the finite model space. The method overcomes the problem of over-fitting deterministic inversion and improves the efficiency of stochastic inversion. Meanwhile, the fusion of multiple sources of information can reduce the non-uniqueness of solutions and improve the inversion accuracy. We derive the APSO algorithm in detail, give the specific workflow of prestack stochastic inversion, and verify the validity of the inversion theory through the inversion test of two-dimensional prestack data in real areas.

Original languageEnglish
Article number2392
JournalApplied Sciences (Switzerland)
Volume12
Issue number5
DOIs
StatePublished - 1 Mar 2022
Externally publishedYes

Keywords

  • Adaptive particle swarm optimization
  • Markov Chain Monte Carlo
  • Prestack stochastic inversion
  • The global optimal value

Fingerprint

Dive into the research topics of 'A New Stochastic Process of Prestack Inversion for Rock Property Estimation'. Together they form a unique fingerprint.

Cite this