A near-optimal sublinear-time algorithm for approximating the minimum vertex cover size

Krzysztof Onak, Dana Ron, Michal Rosen, Ronitt Rubinfeld

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We give a nearly optimal sublinear-time algorithm for approximating the size of a minimum vertex cover in a graph G. The algorithm may query the degree deg(v) of any vertex v of its choice, and for each 1 ≤ i ≤ deg(v), it may ask for the ith neighbor of v. Letting VCopt(G) denote the minimum size of vertex cover in G, the algorithm outputs, with high constant success probability, an estimate VC(G) such that VCopt(G) ≤ VC(G) ≤ 2VCopt(G) + εn, where ε is a given additive approximation parameter. We refer to such an estimate as a (2, ε)-estimate. The query complexity and running time of the algorithm are Õ(d̄ ·poly(1/ε)), where d̄ denotes the average vertex degree in the graph. The best previously known sublinear algorithm, of Yoshida et al. (STOC 2009), has query complexity and running time O(d42) , where d is the maximum degree in the graph. Given the lower bound of Ω(d) (for constant ε) for obtaining such an estimate (with any constant multiplicative factor) due to Parnas and Ron (TCS 2007), our result is nearly optimal. In the case that the graph is dense, that is, the number of edges is Θ(n2), we consider another model, in which the algorithm may ask, for any pair of vertices u and v, whether there is an edge between u and v. We show how to adapt the algorithm that uses neighbor queries to this model and obtain an algorithm that outputs a (2, ε)-estimate of the size of a minimum vertex cover whose query complexity and running time are Õ(n)·poly(1/ε).

Original languageEnglish
Title of host publicationProceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012
PublisherAssociation for Computing Machinery
Pages1123-1131
Number of pages9
ISBN (Print)9781611972108
DOIs
StatePublished - 2012
Event23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012 - Kyoto, Japan
Duration: 17 Jan 201219 Jan 2012

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Conference

Conference23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012
Country/TerritoryJapan
CityKyoto
Period17/01/1219/01/12

Fingerprint

Dive into the research topics of 'A near-optimal sublinear-time algorithm for approximating the minimum vertex cover size'. Together they form a unique fingerprint.

Cite this