TY - JOUR
T1 - A Model for Inferring Market Preferences from Online Retail Product Information Matrices
AU - Gilbride, Timothy J.
AU - Currim, Imran S.
AU - Mintz, Ofer
AU - Siddarth, S.
N1 - Publisher Copyright:
© 2016 New York University
PY - 2016/12/1
Y1 - 2016/12/1
N2 - This research extends information display board methods, currently employed to study information processing patterns in laboratory settings, to a field based setting that also yields managerially useful estimates of market preferences. A new model is proposed based on statistical, behavioral, and economic theories, which integrates three decisions consumers must make in this context: which product-attribute to inspect next, when to stop processing, and which, if any, product to purchase. Several theoretical options are considered on how to model product attribute selection and how to treat uninspected attributes. The modeling options are empirically tested employing datasets collected at a popular e-tailer's website, while customers were making product evaluation and purchase decisions. Subsequent to identifying the best model, we show how the resulting attribute preference estimates can be managerially employed to improve customer targeting of abandoned shopping carts for follow up communications aimed at improving sales conversions.
AB - This research extends information display board methods, currently employed to study information processing patterns in laboratory settings, to a field based setting that also yields managerially useful estimates of market preferences. A new model is proposed based on statistical, behavioral, and economic theories, which integrates three decisions consumers must make in this context: which product-attribute to inspect next, when to stop processing, and which, if any, product to purchase. Several theoretical options are considered on how to model product attribute selection and how to treat uninspected attributes. The modeling options are empirically tested employing datasets collected at a popular e-tailer's website, while customers were making product evaluation and purchase decisions. Subsequent to identifying the best model, we show how the resulting attribute preference estimates can be managerially employed to improve customer targeting of abandoned shopping carts for follow up communications aimed at improving sales conversions.
KW - Choice models
KW - E-commerce
KW - Expected utility
KW - Information processing
KW - Sequential search
UR - http://www.scopus.com/inward/record.url?scp=84995917653&partnerID=8YFLogxK
U2 - 10.1016/j.jretai.2016.07.002
DO - 10.1016/j.jretai.2016.07.002
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84995917653
SN - 0022-4359
VL - 92
SP - 470
EP - 485
JO - Journal of Retailing
JF - Journal of Retailing
IS - 4
ER -