Abstract
A new lower bound on mean-square error in parameter estimation is presented. The bound is tighter than the Cramér-Rao and Bobrovsky-Zakai lower bounds. It requires no bias or regularity assumptions, it is computationally simple, and it can be applied to estimates of vector parameters or functions of the parameters.
Original language | English |
---|---|
Title of host publication | Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking |
Publisher | Wiley-IEEE Press |
Pages | 163-165 |
Number of pages | 3 |
ISBN (Electronic) | 9780470544198 |
ISBN (Print) | 0470120959, 9780470120958 |
DOIs | |
State | Published - 1 Jan 2007 |
Keywords
- Algebra
- Covariance matrix
- Estimation error
- Indium tin oxide
- Linear matrix inequalities
- Parameter estimation
- Signal to noise ratio