TY - JOUR
T1 - A general lower bound for collaborative tree exploration
AU - Disser, Yann
AU - Mousset, Frank
AU - Noever, Andreas
AU - Škorić, Nemanja
AU - Steger, Angelika
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2020/4/2
Y1 - 2020/4/2
N2 - We consider collaborative graph exploration with a set of k agents. All agents start at a common vertex of an initially unknown graph with n vertices and need to collectively visit all other vertices. We assume agents are deterministic, moves are simultaneous, and we allow agents to communicate globally. For this setting, we give the first non-trivial lower bounds that bridge the gap between small (k≤n) and large (k≥n) teams of agents. Remarkably, our bounds tightly connect to existing results in both domains. First, we significantly extend a lower bound of Ω(logk/loglogk) by Dynia et al. on the competitive ratio of a collaborative tree exploration strategy to the range k≤nlogcn for any c∈N. Second, we provide a tight lower bound on the number of agents needed for any competitive exploration algorithm. In particular, we show that any collaborative tree exploration algorithm with k=Dn1+o(1) agents has a competitive ratio of ω(1), while Dereniowski et al. gave an algorithm with k=Dn1+ε agents and competitive ratio O(1), for any ε>0 and with D denoting the diameter of the graph. Lastly, we show that, for any exploration algorithm using k=n agents, there exist trees of arbitrarily large height D that require Ω(D2) rounds, and we provide a simple algorithm that matches this bound for all trees.
AB - We consider collaborative graph exploration with a set of k agents. All agents start at a common vertex of an initially unknown graph with n vertices and need to collectively visit all other vertices. We assume agents are deterministic, moves are simultaneous, and we allow agents to communicate globally. For this setting, we give the first non-trivial lower bounds that bridge the gap between small (k≤n) and large (k≥n) teams of agents. Remarkably, our bounds tightly connect to existing results in both domains. First, we significantly extend a lower bound of Ω(logk/loglogk) by Dynia et al. on the competitive ratio of a collaborative tree exploration strategy to the range k≤nlogcn for any c∈N. Second, we provide a tight lower bound on the number of agents needed for any competitive exploration algorithm. In particular, we show that any collaborative tree exploration algorithm with k=Dn1+o(1) agents has a competitive ratio of ω(1), while Dereniowski et al. gave an algorithm with k=Dn1+ε agents and competitive ratio O(1), for any ε>0 and with D denoting the diameter of the graph. Lastly, we show that, for any exploration algorithm using k=n agents, there exist trees of arbitrarily large height D that require Ω(D2) rounds, and we provide a simple algorithm that matches this bound for all trees.
KW - Autonomous robots
KW - Collaborative graph exploration
KW - Competitive analysis
KW - Lower bounds
UR - http://www.scopus.com/inward/record.url?scp=85044778609&partnerID=8YFLogxK
U2 - 10.1016/j.tcs.2018.03.006
DO - 10.1016/j.tcs.2018.03.006
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85044778609
SN - 0304-3975
VL - 811
SP - 70
EP - 78
JO - Theoretical Computer Science
JF - Theoretical Computer Science
ER -