A forward-backward single-source shortest paths algorithm

David B. Wilson, Uri Zwick

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We describe a new forward-backward variant of Dijkstra's and Spira's Single-Source Shortest Paths (SSSP) algorithms. While essentially all SSSP algorithm only scan edges forward, the new algorithm scans some edges backward. The new algorithm assumes that edges in the out-going and incoming adjacency lists of the vertices appear in nondecreasing order of weight. (Spira's algorithm makes the same assumption about the out-going adjacency lists, but does not use incoming adjacency lists.) The running time of the algorithm on a complete directed graph on n vertices with independent exponential edge weights is O(n), with very high probability. This improves on the previously best result of O(n log n), which is best possible if only forward scans are allowed, exhibiting an interesting separation between forward-only and forwardbackward SSSP algorithms. As a consequence, we also get a new all-pairs shortest paths algorithm. The expected running time of the algorithm on complete graphs with independent exponential edge weights is O(n2), matching a recent result of Peres et al. Furthermore, the probability that the new algorithm requires more than O(n2) time is exponentially small, improving on the polynomially small probability of Peres et al.

Original languageEnglish
Title of host publicationProceedings - 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS 2013
Pages707-716
Number of pages10
DOIs
StatePublished - 2013
Event2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS 2013 - Berkeley, CA, United States
Duration: 27 Oct 201329 Oct 2013

Publication series

NameProceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
ISSN (Print)0272-5428

Conference

Conference2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS 2013
Country/TerritoryUnited States
CityBerkeley, CA
Period27/10/1329/10/13

Keywords

  • Graph algorithms
  • Shortest paths

Fingerprint

Dive into the research topics of 'A forward-backward single-source shortest paths algorithm'. Together they form a unique fingerprint.

Cite this