TY - JOUR
T1 - A first insight into the genetics of maturity trait in Runner × Virginia types peanut background
AU - Kunta, Srinivas
AU - Parimi, Pragna
AU - Levy, Yael
AU - Kottakota, Chandrasekhar
AU - Chedvat, Ilan
AU - Chu, Ye
AU - Ozias-Akins, Peggy
AU - Hovav, Ran
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - 'Runner' and 'Virginia', the two main market types of Arachis hypogaea subspecies hypogaea, differ in several agricultural and industrial characteristics. One such trait is time to maturation (TTM), contributing to the specific environmental adaptability of each subspecies. However, little is known regarding TTM's genetic and molecular control in peanut in general, and particularly in the Runner/Virginia background. Here, a recombinant inbred line population, originating from a cross between an early-maturing Virginia and a late-maturing Runner type, was used to detect quantitative trait loci (QTL) for maturity. An Arachis SNP-array was used for genotyping, and a genetic map with 1425 SNP loci spanning 24 linkage groups was constructed. Six significant QTLs were identified for the maturity index (MI) trait on chromosomes A04, A08, B02 and B04. Two sets of stable QTLs in the same loci were identified, namely qMIA04a,b and qMIA08_2a,b with 11.5%, 8.1% and 7.3%, 8.2% of phenotypic variation explained respectively in two environments. Interestingly, one consistent QTL, qMIA04a,b, overlapped with the previously reported QTL in a Virginia × Virginia population having the same early-maturing parent ('Harari') in common. The information and materials generated here can promote informed targeting of peanut idiotypes by indirect marker-assisted selection.
AB - 'Runner' and 'Virginia', the two main market types of Arachis hypogaea subspecies hypogaea, differ in several agricultural and industrial characteristics. One such trait is time to maturation (TTM), contributing to the specific environmental adaptability of each subspecies. However, little is known regarding TTM's genetic and molecular control in peanut in general, and particularly in the Runner/Virginia background. Here, a recombinant inbred line population, originating from a cross between an early-maturing Virginia and a late-maturing Runner type, was used to detect quantitative trait loci (QTL) for maturity. An Arachis SNP-array was used for genotyping, and a genetic map with 1425 SNP loci spanning 24 linkage groups was constructed. Six significant QTLs were identified for the maturity index (MI) trait on chromosomes A04, A08, B02 and B04. Two sets of stable QTLs in the same loci were identified, namely qMIA04a,b and qMIA08_2a,b with 11.5%, 8.1% and 7.3%, 8.2% of phenotypic variation explained respectively in two environments. Interestingly, one consistent QTL, qMIA04a,b, overlapped with the previously reported QTL in a Virginia × Virginia population having the same early-maturing parent ('Harari') in common. The information and materials generated here can promote informed targeting of peanut idiotypes by indirect marker-assisted selection.
UR - http://www.scopus.com/inward/record.url?scp=85138127172&partnerID=8YFLogxK
U2 - 10.1038/s41598-022-19653-z
DO - 10.1038/s41598-022-19653-z
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 36088406
AN - SCOPUS:85138127172
SN - 2045-2322
VL - 12
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 15267
ER -