A density functional theory study on the mechanism of the allylpalladium-catalyzed dehydrogenation of aldehydes and cyclic ketones

Anan Haj Ichia Arisha*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The results of density functional theory calculations at the APFD/SDD level are detailed herein in order to study the main steps in the α,β-dehydrogenation of aldehydes and cyclic ketones in the presence of an allylpalladium complex catalyst. The mechanism is believed to proceed via an allylpalladium enolate complex (A) in equilibrium with the carbon-bonded complex (B), followed by β-hydride elimination to yield the allylpalladium hydride coordinated to the α,β-unsaturated carbonyl (complex C). The optimized structures and detailed energy profiles of these intermediates and their corresponding transition states are presented herein. The results indicate that the intermediates and their transition states are more stable in THF solution than in the gas phase. In detail, the energy barriers for the two steps are found to be 25.22 and 11.13 kcal/mol, respectively, in THF, and 29.93 and 9.77 kcal/mol, respectively, in the gas phase.

Original languageEnglish
JournalProgress in Reaction Kinetics and Mechanism
Volume46
DOIs
StatePublished - Jun 2021

Keywords

  • allylpalladium
  • dehydrogenation
  • density functional theory
  • α, β-unsaturated carbonyl
  • β-elimination

Fingerprint

Dive into the research topics of 'A density functional theory study on the mechanism of the allylpalladium-catalyzed dehydrogenation of aldehydes and cyclic ketones'. Together they form a unique fingerprint.

Cite this