A CRISPR knockout screen reveals new regulators of canonical Wnt signaling

Tamar Evron, Michal Caspi, Michal Kazelnik, Yarden Shor-Nareznoy, Shir Armoza-Eilat, Revital Kariv, Zohar Manber, Ran Elkon, Ella H. Sklan, Rina Rosin-Arbesfeld

Research output: Contribution to journalArticlepeer-review

Abstract

The Wnt signaling pathways play fundamental roles during both development and adult homeostasis. Aberrant activation of the canonical Wnt signal transduction pathway is involved in many diseases including cancer, and is especially implicated in the development and progression of colorectal cancer. Although extensively studied, new genes, mechanisms and regulatory modulators involved in Wnt signaling activation or silencing are still being discovered. Here we applied a genome-scale CRISPR-Cas9 knockout (KO) screen based on Wnt signaling induced cell survival to reveal new inhibitors of the oncogenic, canonical Wnt pathway. We have identified several potential Wnt signaling inhibitors and have characterized the effects of the initiation factor DExH-box protein 29 (DHX29) on the Wnt cascade. We show that KO of DHX29 activates the Wnt pathway leading to upregulation of the Wnt target gene cyclin-D1, while overexpression of DHX29 inhibits the pathway. Together, our data indicate that DHX29 may function as a new canonical Wnt signaling tumor suppressor and demonstrates that this screening approach can be used as a strategy for rapid identification of novel Wnt signaling modulators.

Original languageEnglish
Article number63
JournalOncogenesis
Volume10
Issue number9
DOIs
StatePublished - Sep 2021

Fingerprint

Dive into the research topics of 'A CRISPR knockout screen reveals new regulators of canonical Wnt signaling'. Together they form a unique fingerprint.

Cite this