A Convolutional Neural Network Deep Learning Model Trained on CD Ulcers Images Accurately Identifies NSAID Ulcers

Eyal Klang*, Uri Kopylov, Brynjulf Mortensen, Anders Damholt, Shelly Soffer, Yiftach Barash, Eli Konen, Ana Grinman, Reuma Margalit Yehuda, Martin Buckley, Fergus Shanahan, Rami Eliakim, Shomron Ben-Horin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Background and Study Aims: Deep learning (DL) for video capsule endoscopy (VCE) is an emerging research field. It has shown high accuracy for the detection of Crohn's disease (CD) ulcers. Non-steroidal anti-inflammatory drugs (NSAIDS) are commonly used medications. In the small bowel, NSAIDs may cause a variety of gastrointestinal adverse events including NSAID-induced ulcers. These ulcers are the most important differential diagnosis for small bowel ulcers in patients evaluated for suspected CD. We evaluated a DL network that was trained using CD VCE ulcer images and evaluated its performance for NSAID ulcers. Patients and Methods: The network was trained using CD ulcers and normal mucosa from a large image bank created from VCE of diagnosed CD patients. NSAIDs-induced enteropathy images were extracted from the prospective Bifidobacterium breve (BIf95) trial dataset. All images were acquired from studies performed using PillCam SBIII. The area under the receiver operating curve (AUC) was used as a metric. We compared the network's AUC for detecting NSAID ulcers to that of detecting CD ulcers. Results: Overall, the CD training dataset included 17,640 CE images. The NSAIDs testing dataset included 1,605 CE images. The DL network exhibited an AUC of 0.97 (95% CI 0.97–0.98) for identifying images with NSAID mucosal ulcers. The diagnostic accuracy was similar to that obtained for CD related ulcers (AUC 0.94–0.99). Conclusions: A network trained on VCE CD ulcers similarly identified NSAID findings. As deep learning is transforming gastrointestinal endoscopy, this result should be taken into consideration in the future design and analysis of VCE deep learning applications.

Original languageEnglish
Article number656493
JournalFrontiers in Medicine
Volume8
DOIs
StatePublished - 27 Aug 2021

Funding

FundersFunder number
Pfizer
GlaxoSmithKline
AbbVie

    Keywords

    • Crohn disease
    • NSAID
    • anti-inflammatory agents
    • capsule endoscopy
    • deep learning
    • non-steroidal

    Fingerprint

    Dive into the research topics of 'A Convolutional Neural Network Deep Learning Model Trained on CD Ulcers Images Accurately Identifies NSAID Ulcers'. Together they form a unique fingerprint.

    Cite this