TY - JOUR

T1 - A construction for the hat problem on a directed graph

AU - Hod, Rani

AU - Krzywkowski, Marcin

PY - 2012

Y1 - 2012

N2 - A team of n players plays the following game. After a strategy session, each player is randomly fitted with a blue or red hat. Then, without further communi-cation, everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. Visibility is deńed by a directed graph; that is, vertices correspond to players, and a player can see each player to whom he is connected by an arc. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The team aims to maximize the probability of a win, and this maximum is called the hat number of the graph. Previous works focused on the hat problem on complete graphs and on undi-rected graphs. Some cases were solved, e.g., complete graphs of certain orders, trees, cycles, and bipartite graphs. These led Uriel Feige to conjecture that the hat number of any graph is equal to the hat number of its maximum clique. We show that the conjecture does not hold for directed graphs. Moreover, for every value of the maximum clique size, we provide a tight characterization of the range of possible values of the hat number. We construct families of directed graphs with a fixed clique number the hat number of which is asymptotically optimal. We also determine the hat number of tournaments to be one half.

AB - A team of n players plays the following game. After a strategy session, each player is randomly fitted with a blue or red hat. Then, without further communi-cation, everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. Visibility is deńed by a directed graph; that is, vertices correspond to players, and a player can see each player to whom he is connected by an arc. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The team aims to maximize the probability of a win, and this maximum is called the hat number of the graph. Previous works focused on the hat problem on complete graphs and on undi-rected graphs. Some cases were solved, e.g., complete graphs of certain orders, trees, cycles, and bipartite graphs. These led Uriel Feige to conjecture that the hat number of any graph is equal to the hat number of its maximum clique. We show that the conjecture does not hold for directed graphs. Moreover, for every value of the maximum clique size, we provide a tight characterization of the range of possible values of the hat number. We construct families of directed graphs with a fixed clique number the hat number of which is asymptotically optimal. We also determine the hat number of tournaments to be one half.

KW - Clique number

KW - Digraph

KW - Directed graph

KW - Skeleton

KW - That problem

UR - http://www.scopus.com/inward/record.url?scp=84857024317&partnerID=8YFLogxK

U2 - 10.37236/1994

DO - 10.37236/1994

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:84857024317

SN - 1077-8926

VL - 19

JO - Electronic Journal of Combinatorics

JF - Electronic Journal of Combinatorics

ER -