TY - JOUR
T1 - A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells
AU - Moraïs, Sarah
AU - Shterzer, Naama
AU - Lamed, Raphael
AU - Bayer, Edward A.
AU - Mizrahi, Itzhak
N1 - Funding Information:
The authors are grateful to Vincent GH Eijsink and Geir Mathiesen (Department of Chemistry Biotechnology and Food Science, Norwegian University of Life Sciences) for providing the anchoring and secreting vectors and Dr. Inna Rozman Grinberg for cloning in the secretion vectors. The authors appreciate the technical assistance of Michael Ioelovich (Designer Energy, Rehovot, Israel) for wheat straw pretreatment, Dr Elena Kartvelishvily (Electron Microscopy Unit, Department of Chemical Research Support, Weizmann Institute) for SEM experiments and Vladimir Kiss (Department of Biological Chemistry, Weizmann Institute), Eduard Belausov (Agricultural Research Organization) and Dr Yael Vazana (Department of Biological Chemistry, Weizmann Institute) for confocal microscopy experiments. The authors thank Dr Ely Morag for the fruitful discussions. This research was supported by grant number 362043313 from the Israel Ministry of Science Technology and Space and grant number 362042613 from the Israel Ministry of Agriculture and Rural Development. Additional support was obtained by a grant (number 24/11) issued to RL by The Sidney E Frank Foundation through the Israel Science Foundation (ISF), by the Research Fund of Israel Dairy Board grant number 362-0348-12362-0316-11 and by a grant (number 1325/14) to EAB also from the ISF. This research was also supported by the establishment of an Israeli Center of Research Excellence (I-CORE Center, number 152/11, EAB and YS) managed by the Israel Science Foundation, from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel, by the Weizmann Institute of Science Alternative Energy Research Initiative (AERI) and the Helmsley Foundation. EAB is the incumbent of The Maynard I and Elaine Wishner Chair of Bio-organic Chemistry.
PY - 2014/7/24
Y1 - 2014/7/24
N2 - Background: Lactobacillus plantarum is an attractive candidate for metabolic engineering towards bioprocessing of lignocellulosic biomass to ethanol or polylactic acid, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize the two major polysaccharide constituents of lignocellulolytic biomass (pentoses and hexoses). We recently engineered L. plantarum via separate introduction of a potent cellulase and xylanase, thereby creating two different L. plantarum strains. We used these strains as a combined cell-consortium for synergistic degradation of cellulosic biomass. Results: To optimize enzymatic degradation, we applied the cell-consortium approach to assess the significance of enzyme localization by comparing three enzymatic paradigms prevalent in nature: (i) a secreted enzymes system, (ii) enzymes anchored to the bacterial cell surface and (iii) enzymes integrated into cellulosome complexes. The construction of the three paradigmatic systems involved the division of the production and organization of the enzymes and scaffold proteins into different strains of L. plantarum. The spatial differentiation of the components of the enzymatic systems alleviated the load on the cell machinery of the different bacterial strains. Active designer cellulosomes containing a xylanase and a cellulase were thus assembled on L. plantarum cells by co-culturing three distinct engineered strains of the bacterium: two helper strains for enzyme secretion and one producing only the anchored scaffoldin. Alternatively, the two enzymes were anchored separately to the cell wall. The secreted enzyme consortium appeared to have a slight advantage over the designer cellulosome system in degrading the hypochlorite pretreated wheat straw substrate, and both exhibited significantly higher levels of activity compared to the anchored enzyme consortium. However, the secreted enzymes appeared to be less stable than the enzymes integrated into designer cellulosomes, suggesting an advantage of the latter over longer time periods. Conclusions: By developing the potential of L. plantarum to express lignocellulolytic enzymes and to control their functional combination and stoichiometry on the cell wall, this study provides a step forward towards optimal biomass bioprocessing and soluble fermentable sugar production. Future expansion of the preferred secreted-enzyme and designer-cellulosome systems to include additional types of enzymes will promote enhanced deconstruction of cellulosic feedstocks.
AB - Background: Lactobacillus plantarum is an attractive candidate for metabolic engineering towards bioprocessing of lignocellulosic biomass to ethanol or polylactic acid, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize the two major polysaccharide constituents of lignocellulolytic biomass (pentoses and hexoses). We recently engineered L. plantarum via separate introduction of a potent cellulase and xylanase, thereby creating two different L. plantarum strains. We used these strains as a combined cell-consortium for synergistic degradation of cellulosic biomass. Results: To optimize enzymatic degradation, we applied the cell-consortium approach to assess the significance of enzyme localization by comparing three enzymatic paradigms prevalent in nature: (i) a secreted enzymes system, (ii) enzymes anchored to the bacterial cell surface and (iii) enzymes integrated into cellulosome complexes. The construction of the three paradigmatic systems involved the division of the production and organization of the enzymes and scaffold proteins into different strains of L. plantarum. The spatial differentiation of the components of the enzymatic systems alleviated the load on the cell machinery of the different bacterial strains. Active designer cellulosomes containing a xylanase and a cellulase were thus assembled on L. plantarum cells by co-culturing three distinct engineered strains of the bacterium: two helper strains for enzyme secretion and one producing only the anchored scaffoldin. Alternatively, the two enzymes were anchored separately to the cell wall. The secreted enzyme consortium appeared to have a slight advantage over the designer cellulosome system in degrading the hypochlorite pretreated wheat straw substrate, and both exhibited significantly higher levels of activity compared to the anchored enzyme consortium. However, the secreted enzymes appeared to be less stable than the enzymes integrated into designer cellulosomes, suggesting an advantage of the latter over longer time periods. Conclusions: By developing the potential of L. plantarum to express lignocellulolytic enzymes and to control their functional combination and stoichiometry on the cell wall, this study provides a step forward towards optimal biomass bioprocessing and soluble fermentable sugar production. Future expansion of the preferred secreted-enzyme and designer-cellulosome systems to include additional types of enzymes will promote enhanced deconstruction of cellulosic feedstocks.
KW - Biomass
KW - Biomimicry
KW - Bioprocessing
KW - Designer cellulosome
KW - Enzymatic paradigm
KW - Glycoside hydrolase
KW - Spatial differentiation
KW - Wheat straw
UR - http://www.scopus.com/inward/record.url?scp=84904527345&partnerID=8YFLogxK
U2 - 10.1186/1754-6834-7-112
DO - 10.1186/1754-6834-7-112
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84904527345
VL - 7
JO - Biotechnology for Biofuels
JF - Biotechnology for Biofuels
SN - 1754-6834
IS - 1
M1 - 112
ER -