TY - JOUR

T1 - A characterization of the (natural) graph properties testable with one-sided error

AU - Alon, Noga

AU - Shapira, Asaf

PY - 2007

Y1 - 2007

N2 - The problem of characterizing all the testable graph properties is considered by many to be the most important open problem in the area of property testing. Our main result in this paper is a solution of an important special case of this general problem: Call a property tester oblivious if its decisions are independent of the size of the input graph. We show that a graph property P has an oblivious one-sided error tester if arid only if P is semihereditary. We stress that any "natural" property that can be tested (either with one-sided or with two-sided error) can be tested by an oblivious tester. In particular, all the testers studied thus far in the literature were oblivious. Our main result can thus be considered as a precise characterization of the natural graph properties, which are testable with one-sided error. One of the main technical contributions of this paper is in showing that any hereditary graph property can be tested with one-sided error. This general result contains as a special case all the previous results about testing graph properties with one-sided error. More importantly, as a special case of our main result, we infer that some of the most well-studied graph properties, both in graph theory and computer science, are testable with one-sided error. Some of these properties are the well-known graph properties of being perfect, chordal, interval, comparability, permutation, and more. None of these properties was previously known to be testable.

AB - The problem of characterizing all the testable graph properties is considered by many to be the most important open problem in the area of property testing. Our main result in this paper is a solution of an important special case of this general problem: Call a property tester oblivious if its decisions are independent of the size of the input graph. We show that a graph property P has an oblivious one-sided error tester if arid only if P is semihereditary. We stress that any "natural" property that can be tested (either with one-sided or with two-sided error) can be tested by an oblivious tester. In particular, all the testers studied thus far in the literature were oblivious. Our main result can thus be considered as a precise characterization of the natural graph properties, which are testable with one-sided error. One of the main technical contributions of this paper is in showing that any hereditary graph property can be tested with one-sided error. This general result contains as a special case all the previous results about testing graph properties with one-sided error. More importantly, as a special case of our main result, we infer that some of the most well-studied graph properties, both in graph theory and computer science, are testable with one-sided error. Some of these properties are the well-known graph properties of being perfect, chordal, interval, comparability, permutation, and more. None of these properties was previously known to be testable.

KW - Hereditary properties

KW - One-sided error

KW - Property testing

KW - Regularity lemma

UR - http://www.scopus.com/inward/record.url?scp=49649088238&partnerID=8YFLogxK

U2 - 10.1137/06064888X

DO - 10.1137/06064888X

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:49649088238

SN - 0097-5397

VL - 37

SP - 1703

EP - 1727

JO - SIAM Journal on Computing

JF - SIAM Journal on Computing

IS - 6

ER -