TY - JOUR
T1 - A causal probabilistic network for optimal treatment of bacterial infections
AU - Leibovici, Leonard
AU - Fishman, Michal
AU - Schønheyder, Henrik C.
AU - Riekehr, Christian
AU - Kristensen, Brian
AU - Shraga, Ilana
AU - Andreassen, Steen
PY - 2000
Y1 - 2000
N2 - The fatality rate associated with severe bacterial infections is about 30 percent and appropriate antibiotic treatment reduces it by half. Unfortunately, about a third of antibiotic treatments prescribed by physicians are inappropriate. We have built a causal probabilistic network (CPN) for treatment of severe bacterial infections. The net is based on modules, each module representing a site of infection. The general configuration of a module is as follows: Major distribution factors define groups of patients, each of them with a definite prevalence of infection caused by a given pathogen. Minor distribution factors multiply the likelihood of one pathogen, without changing much of the prevalence of infection. Infection caused by a pathogen causes local and generalized signs and symptoms. Antibiotic treatment is appropriate if it matches the susceptibility of the pathogens in vitro and appropriate treatment is associated with a gain in life expectancy. This is balanced against the cost of the drug, side effects, and ecological damage, to reach the most cost effective treatment. The net was constructed in such a way that the data for the conditional probability tables will be available, even if it meant sometimes giving up on fine modeling details. For data, we used large databases collected by us in the last 10 years and data from the literature. The CPN was a convenient way to combine data from databases collected at different locations and times with published information. Although the net is based on detailed and large databases, its calibration to new sites requires data that is available in most modern hospitals.
AB - The fatality rate associated with severe bacterial infections is about 30 percent and appropriate antibiotic treatment reduces it by half. Unfortunately, about a third of antibiotic treatments prescribed by physicians are inappropriate. We have built a causal probabilistic network (CPN) for treatment of severe bacterial infections. The net is based on modules, each module representing a site of infection. The general configuration of a module is as follows: Major distribution factors define groups of patients, each of them with a definite prevalence of infection caused by a given pathogen. Minor distribution factors multiply the likelihood of one pathogen, without changing much of the prevalence of infection. Infection caused by a pathogen causes local and generalized signs and symptoms. Antibiotic treatment is appropriate if it matches the susceptibility of the pathogens in vitro and appropriate treatment is associated with a gain in life expectancy. This is balanced against the cost of the drug, side effects, and ecological damage, to reach the most cost effective treatment. The net was constructed in such a way that the data for the conditional probability tables will be available, even if it meant sometimes giving up on fine modeling details. For data, we used large databases collected by us in the last 10 years and data from the literature. The CPN was a convenient way to combine data from databases collected at different locations and times with published information. Although the net is based on detailed and large databases, its calibration to new sites requires data that is available in most modern hospitals.
KW - Antibiotic treatment
KW - Bacteremia
KW - Bacterial infections
KW - Causal probabilistic networks
KW - Cost-effectiveness
UR - http://www.scopus.com/inward/record.url?scp=0034215508&partnerID=8YFLogxK
U2 - 10.1109/69.868905
DO - 10.1109/69.868905
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0034215508
SN - 1041-4347
VL - 12
SP - 517
EP - 528
JO - IEEE Transactions on Knowledge and Data Engineering
JF - IEEE Transactions on Knowledge and Data Engineering
IS - 4
ER -