TY - GEN
T1 - A bound on the shannon capacity via a linear programming variation
AU - Hu, Sihuang
AU - Tamo, Itzhak
AU - Shayevitz, Ofer
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/8/9
Y1 - 2017/8/9
N2 - We prove an upper bound on the Shannon capacity of a graph via a linear programming variation. We also show that our bound can be better than Lovász theta number and Haemers minimum rank bound.
AB - We prove an upper bound on the Shannon capacity of a graph via a linear programming variation. We also show that our bound can be better than Lovász theta number and Haemers minimum rank bound.
UR - http://www.scopus.com/inward/record.url?scp=85034056893&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2017.8006691
DO - 10.1109/ISIT.2017.8006691
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85034056893
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 1063
EP - 1066
BT - 2017 IEEE International Symposium on Information Theory, ISIT 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE International Symposium on Information Theory, ISIT 2017
Y2 - 25 June 2017 through 30 June 2017
ER -