TY - JOUR

T1 - A 1.5-approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2

AU - Even, Guy

AU - Kortsarz, Guy

AU - Nutov, Zeev

N1 - Funding Information:
✩ Preliminary version in APPROX 2001, pp. 90–101. * Corresponding author. E-mail addresses: guy@eng.tau.ac.il (G. Even), guyk@crab.rutgers.edu (G. Kortsarz), nutov@openu.ac.il (Z. Nutov). 1 Partially supported by NSF grant number 0728787.

PY - 2011/2/15

Y1 - 2011/2/15

N2 - We consider the following NP-hard problem: given a connected graph G=(V,ε) and a link set E on V disjoint to ε, find a minimum size subset of edges F ⊆ E such that (V,ε∪F) is 2-edge-connected. In G. Even et al. (2005) [2] we presented a 1.8-approximation for the problem. In this paper we improve the ratio to 1.5.

AB - We consider the following NP-hard problem: given a connected graph G=(V,ε) and a link set E on V disjoint to ε, find a minimum size subset of edges F ⊆ E such that (V,ε∪F) is 2-edge-connected. In G. Even et al. (2005) [2] we presented a 1.8-approximation for the problem. In this paper we improve the ratio to 1.5.

KW - Approximation algorithms

KW - Laminar family

KW - Tree augmentation

UR - http://www.scopus.com/inward/record.url?scp=78650268807&partnerID=8YFLogxK

U2 - 10.1016/j.ipl.2010.12.010

DO - 10.1016/j.ipl.2010.12.010

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:78650268807

SN - 0020-0190

VL - 111

SP - 296

EP - 300

JO - Information Processing Letters

JF - Information Processing Letters

IS - 6

ER -