TY - JOUR
T1 - 3.0 Tesla normative diffusivity in 3rd trimester fetal brain
AU - Segev, Maria
AU - Djurabayev, Bella
AU - Katorza, Eldad
AU - Yaniv, Gal
AU - Hoffmann, Chen
AU - Shrot, Shai
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2022/6
Y1 - 2022/6
N2 - Purpose: Apparent diffusion coefficient (ADC) values in the developing fetus provide valuable information on the diagnosis and prognosis of prenatal brain pathologies. Normative ADC data has been previously established in 1.5 T MR scanners but lacking in 3.0 T scanners. Our objective was to measure ADC values in various brain areas in a cohort of normal singleton fetuses scanned in a 3.0 T MR scanner. Methods: DWI (diffusion-weighted imaging) was performed in 47 singleton fetuses with normal or questionably abnormal results on sonography followed by normal structural MR imaging. ADC values were measured in cerebral lobes (frontal, parietal, temporal lobes), basal ganglia, and pons. Regression analysis was used to examine gestational age-related changes in regional ADC. Results: Median gestational age was 30.1 weeks (range, 26–34 weeks). There was a significant effect of region on ADC values, whereby ADC values were highest in cerebral lobes (parietal > frontal > temporal lobes), compared with basal ganglia. The lowest values were found in the pons. On regression analysis, there was a decrease in ADC values in basal ganglia and pons with increasing gestational age. ADC values in frontal, parietal, and temporal lobes were stable in our cohort. Conclusion: Regional brain ADC values in 3.0 T scanners are comparable with previously reported values in 1.5 T scanners, with similar changes over gestational age. Using 3.0 T scanners is increasing worldwide. For fetal imaging, establishing normal ADC values is critical as DWI enables a sensitive and quantitative technique to evaluate normal and abnormal brain development.
AB - Purpose: Apparent diffusion coefficient (ADC) values in the developing fetus provide valuable information on the diagnosis and prognosis of prenatal brain pathologies. Normative ADC data has been previously established in 1.5 T MR scanners but lacking in 3.0 T scanners. Our objective was to measure ADC values in various brain areas in a cohort of normal singleton fetuses scanned in a 3.0 T MR scanner. Methods: DWI (diffusion-weighted imaging) was performed in 47 singleton fetuses with normal or questionably abnormal results on sonography followed by normal structural MR imaging. ADC values were measured in cerebral lobes (frontal, parietal, temporal lobes), basal ganglia, and pons. Regression analysis was used to examine gestational age-related changes in regional ADC. Results: Median gestational age was 30.1 weeks (range, 26–34 weeks). There was a significant effect of region on ADC values, whereby ADC values were highest in cerebral lobes (parietal > frontal > temporal lobes), compared with basal ganglia. The lowest values were found in the pons. On regression analysis, there was a decrease in ADC values in basal ganglia and pons with increasing gestational age. ADC values in frontal, parietal, and temporal lobes were stable in our cohort. Conclusion: Regional brain ADC values in 3.0 T scanners are comparable with previously reported values in 1.5 T scanners, with similar changes over gestational age. Using 3.0 T scanners is increasing worldwide. For fetal imaging, establishing normal ADC values is critical as DWI enables a sensitive and quantitative technique to evaluate normal and abnormal brain development.
KW - Apparent diffusion coefficient
KW - Development
KW - MRI
KW - Normogram
UR - http://www.scopus.com/inward/record.url?scp=85120850947&partnerID=8YFLogxK
U2 - 10.1007/s00234-021-02863-z
DO - 10.1007/s00234-021-02863-z
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 34820712
AN - SCOPUS:85120850947
SN - 0028-3940
VL - 64
SP - 1249
EP - 1254
JO - Neuroradiology
JF - Neuroradiology
IS - 6
ER -