1,25-Dihydroxyvitamin D3 increases the sensitivity of human renal carcinoma cells to tumor necrosis factor α but not to interferon α or lymphokine-activated killer cells

R. Yacobi, R. Koren, U. A. Liberman, C. Rotem, L. Wasserman, A. Ravid

Research output: Contribution to journalArticlepeer-review

Abstract

Renal cell carcinoma is a chemotherapy-resistant tumor which is relatively responsive to immunotherapy. Immunotherapeutic regimes employ interferons or interleukin 2 with or without lymphokine-activated killer cells. Secondary cytokines, induced by interleukin 2 or interferon, may have an important impact on their anti-neoplastic activity. Notable among them is tumor necrosis factor (TNFα). We assessed the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the susceptibility of the human renal cell carcinoma cell line SK-RC-29 to the cytotoxic and cytostatic actions of TNFα, interferon α and lymphokine-activated killer cells. Using uptake of the vital dye neutral red as an indicator of viable cell number, we found that addition of 1,25(OH)2D3 (100 nM) to TNFα (30 ng/ml)-treated cultures resulted in a 2.6 ± 0.2-fold (mean ± S.E.) increase in the cytotoxic effect of the cytokine. The potentiating effect of 1,25(OH)2D3 was dose-dependent, and significant at concentrations equal to or higher than 10 nM. Another dihydroxylated vitamin D metabolite, 24,25(OH)2D3, had no effect on TNFα action. The cytotoxic effect of TNFα increased whereas the potentiation by 1,25(OH)2D3 decreased with cell density in culture. 1,25(OH)2D3, in contrast to its potentiating effect on TNFα action, did not modulate the cytostatic effect of interferon α or the susceptibility of SK-RC-29 to killing by lymphokine-activated killer cells. The findings reported here may explain some of the in vivo anti-tumor activity of 1,25(OH)2D3 and provide a rationale for the employment of active vitamin D analogs during immune anti-cancer therapy.

Original languageEnglish
Pages (from-to)327-333
Number of pages7
JournalJournal of Endocrinology
Volume149
Issue number2
DOIs
StatePublished - May 1996

Fingerprint

Dive into the research topics of '1,25-Dihydroxyvitamin D3 increases the sensitivity of human renal carcinoma cells to tumor necrosis factor α but not to interferon α or lymphokine-activated killer cells'. Together they form a unique fingerprint.

Cite this